Back to list
adaptyvbio

binder-design

by adaptyvbio

Claude Code skills for protein design

70🍴 7📅 Jan 23, 2026

SKILL.md


name: binder-design description: > Guidance for choosing the right protein binder design tool. Use this skill when: (1) Deciding between BoltzGen, BindCraft, or RFdiffusion, (2) Planning a binder design campaign, (3) Understanding trade-offs between different approaches, (4) Selecting tools for specific target types.

For specific tool parameters, use the individual tool skills (boltzgen, bindcraft, rfdiffusion, etc.). license: MIT category: orchestration tags: [guidance, tool-selection, workflow]

Binder Design Tool Selection

Decision tree

De novo binder design?
│
├─ Standard target → BoltzGen (recommended)
│   All-atom output (no separate ProteinMPNN step needed)
│   Better for ligand/small molecule binding
│   Single-step design (backbone + sequence + side chains)
│
├─ Need diversity/exploration → RFdiffusion + ProteinMPNN
│   Maximum backbone diversity
│   Two-step: backbone then sequence
│
├─ Integrated validation → BindCraft
│   Built-in AF2 validation
│   End-to-end pipeline
│
├─ Ligand binding → BoltzGen ✓
│   All-atom diffusion handles ligand context
│
├─ Peptide/nanobody → Germinal
│   VHH/nanobody design
│   Germline-aware optimization
│
└─ Antibody/Nanobody
    +-- VHH design --> germinal skill

Tool comparison

ToolStrengthsWeaknessesBest For
BoltzGenAll-atom, single-step, ligand-awareHigher GPU requirementStandard (recommended)
BindCraftEnd-to-end, built-in AF2 validationLess diverseProduction campaigns
RFdiffusionHigh diversity, fastRequires ProteinMPNNExploration, diversity
GerminalNanobody/VHH designSpecializedAntibody optimization

BoltzGen provides all-atom design with built-in side-chain packing:

Target → BoltzGen → Validate → Filter
 (pdb)  (all-atom)   (chai)     (qc)

1. Target preparation

# Fetch structure from PDB
# Use pdb skill for guidance
  • Trim to binding region + 10A buffer
  • Remove waters and ligands
  • Renumber chains if needed

2. Hotspot selection

  • Choose 3-6 exposed residues
  • Prefer charged/aromatic residues
  • Cluster spatially (within 10-15A)

First, create a YAML config file (e.g., binder.yaml):

entities:
  - protein:
      id: B
      sequence: 70..100

  - file:
      path: target.cif
      include:
        - chain:
            id: A
      binding_types:
        - chain:
            id: A
            binding: 45,67,89

Then run:

modal run modal_boltzgen.py \
  --input-yaml binder.yaml \
  --protocol protein-anything \
  --num-designs 50

Why BoltzGen?

  • All-atom output (no separate ProteinMPNN step needed)
  • Better for ligand/small molecule binding
  • Single-step design (backbone + sequence + side chains)

4. Alternative: RFdiffusion Pipeline

For maximum diversity or when backbone-only is preferred:

# Step 1: Backbone generation
modal run modal_rfdiffusion.py \
  --pdb target.pdb \
  --contigs "A1-150/0 70-100" \
  --hotspot "A45,A67,A89" \
  --num-designs 500

# Step 2: Sequence design
modal run modal_ligandmpnn.py \
  --pdb-path backbone.pdb \
  --num-seq-per-target 16 \
  --sampling-temp 0.1

5. Validation

modal run modal_chai1.py \
  --input-faa sequences.fasta \
  --out-dir predictions/

6. Filtering

Apply standard thresholds:

  • pLDDT > 0.80
  • ipTM > 0.50
  • PAE_interface < 10
  • scRMSD < 2.0 A

See protein-qc skill for details.

Number of designs

StageCountPurpose
Backbone generation500-1000Diversity
Sequences per backbone8-16Sequence space
AF2 predictionsAllValidation
After filtering50-200Candidates
Experimental testing10-50Final selection

Common mistakes

Wrong hotspots

  • Using buried residues
  • Too many hotspots (over-constrain)
  • Wrong chain/residue numbers

Insufficient diversity

  • Too few designs generated
  • Low temperature in ProteinMPNN
  • Not exploring multiple backbones

Poor target preparation

  • Including full protein instead of binding region
  • Missing important structural features
  • Wrong protonation states

Timeline guide

StepCompute Time
RFdiffusion (500 designs)2-4 hours
ProteinMPNN (8000 sequences)1-2 hours
AF2 prediction (8000 sequences)12-24 hours
Filtering and analysis1-2 hours

Total: 1-2 days of compute

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

0/5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon