Back to list
adaptyvbio

bindcraft

by adaptyvbio

Claude Code skills for protein design

70🍴 7📅 Jan 23, 2026

SKILL.md


name: bindcraft description: > End-to-end binder design using BindCraft hallucination. Use this skill when: (1) Designing protein binders with built-in AF2 validation, (2) Running production-quality binder campaigns, (3) Using different design protocols (fast, default, slow), (4) Need joint backbone and sequence optimization, (5) Want high experimental success rate.

For backbone-only generation, use rfdiffusion. For QC thresholds, use protein-qc. For tool selection guidance, use binder-design. license: MIT category: design-tools tags: [structure-design, sequence-design, binder, pipeline] proteinbase_slug: bindcraft proteinbase_url: https://proteinbase.com/design-methods/bindcraft biomodals_script: modal_bindcraft.py

BindCraft Binder Design

Prerequisites

RequirementMinimumRecommended
Python3.9+3.10
CUDA11.7+12.0+
GPU VRAM32GB48GB (L40S)
RAM32GB64GB

How to run

First time? See Installation Guide to set up Modal and biomodals.

cd biomodals
modal run modal_bindcraft.py \
  --target-pdb target.pdb \
  --target-chain A \
  --binder-lengths 70-100 \
  --hotspots "A45,A67,A89" \
  --num-designs 50

GPU: L40S (48GB) | Timeout: 3600s default

Option 2: Local installation

git clone https://github.com/martinpacesa/BindCraft.git
cd BindCraft
pip install -r requirements.txt

python bindcraft.py \
  --target target.pdb \
  --target_chains A \
  --binder_lengths 70-100 \
  --hotspots A45,A67,A89 \
  --num_designs 50

Key parameters

ParameterDefaultRangeDescription
--target-pdbrequiredpathTarget structure
--target-chainrequiredA-ZTarget chain(s)
--binder-lengths70-10040-150Length range
--hotspotsNoneresiduesTarget hotspots
--num-designs501-500Number of designs
--protocoldefaultfast/default/slowQuality vs speed

Protocols

ProtocolSpeedQualityUse Case
fastFastLowerInitial screening
defaultMediumGoodStandard campaigns
slowSlowHighFinal production

Output format

output/
├── design_0/
│   ├── binder.pdb         # Final design
│   ├── complex.pdb        # Binder + target
│   ├── metrics.json       # QC scores
│   └── trajectory/        # Optimization trajectory
├── design_1/
│   └── ...
└── summary.csv            # All metrics

Metrics Output

{
  "plddt": 0.89,
  "ptm": 0.78,
  "iptm": 0.62,
  "pae": 8.5,
  "rmsd": 1.2,
  "sequence": "MKTAYIAK..."
}

Sample output

Successful run

$ modal run modal_bindcraft.py --target-pdb target.pdb --num-designs 50
[INFO] Loading BindCraft model...
[INFO] Target: target.pdb (chain A)
[INFO] Hotspots: A45, A67, A89
[INFO] Protocol: default
[INFO] Generating 50 designs...

Design 1/50:
  Length: 78 AA
  pLDDT: 0.89, ipTM: 0.62
  Saved: output/design_0/

Design 50/50:
  Length: 85 AA
  pLDDT: 0.86, ipTM: 0.58
  Saved: output/design_49/

[INFO] Campaign complete. Summary: output/summary.csv
Pass rate: 32/50 (64%) with ipTM > 0.5

What good output looks like:

  • pLDDT: > 0.85 for most designs
  • ipTM: > 0.5 for passing designs
  • Pass rate: 30-70% depending on target
  • Diverse sequences across designs

Decision tree

Should I use BindCraft?
│
├─ What type of design?
│  ├─ Production-quality binders → BindCraft ✓
│  ├─ High diversity exploration → RFdiffusion
│  └─ All-atom precision → BoltzGen
│
├─ What matters most?
│  ├─ Experimental success rate → BindCraft ✓
│  ├─ Speed / diversity → RFdiffusion + ProteinMPNN
│  ├─ AF2 gradient optimization → ColabDesign
│  └─ All-atom control → BoltzGen
│
└─ Compute resources?
   ├─ Have L40S/A100 → BindCraft ✓
   └─ Only A10G → RFdiffusion + ProteinMPNN

Typical performance

Campaign SizeTime (L40S)Cost (Modal)Notes
50 designs2-4h~$15Quick campaign
100 designs4-8h~$30Standard
200 designs8-16h~$60Large campaign

Expected pass rate: 30-70% with ipTM > 0.5 (target-dependent).


Verify

find output -name "binder.pdb" | wc -l  # Should match num_designs

Troubleshooting

Low ipTM scores: Check hotspot selection, increase designs Slow convergence: Use fast protocol for screening OOM errors: Reduce num_models, use L40S GPU Poor diversity: Lower sampling_temp, run multiple seeds

Error interpretation

ErrorCauseFix
RuntimeError: CUDA out of memoryLarge target or long binderUse L40S/A100, reduce binder length
ValueError: no hotspotsHotspots not foundCheck residue numbering
TimeoutErrorDesign taking too longUse fast protocol

Next: Rank by ipsae → experimental validation.

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

0/5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon