Back to list
adaptyvbio

alphafold

by adaptyvbio

Claude Code skills for protein design

70🍴 7📅 Jan 23, 2026

SKILL.md


name: alphafold description: > Validate protein designs using AlphaFold2 structure prediction. Use this skill when: (1) Validating designed sequences fold correctly, (2) Predicting binder-target complex structures, (3) Calculating confidence metrics (pLDDT, pTM, ipTM), (4) Self-consistency validation of designs, (5) Multi-chain complex prediction with AlphaFold-Multimer.

For faster single-chain prediction, use esm. For QC thresholds, use protein-qc. license: MIT category: design-tools tags: [structure-prediction, validation, reference] biomodals_script: modal_alphafold.py

AlphaFold2 Structure Validation

Prerequisites

RequirementMinimumRecommended
Python3.8+3.10
CUDA11.0+12.0+
GPU VRAM32GB40GB (A100)
RAM32GB64GB
Disk100GB500GB (for databases)

How to run

First time? See Installation Guide to set up Modal and biomodals.

cd biomodals
modal run modal_colabfold.py \
  --input-faa sequences.fasta \
  --out-dir output/

GPU: A100 (40GB) | Timeout: 3600s default

Option 2: Local installation

git clone https://github.com/deepmind/alphafold.git
cd alphafold

python run_alphafold.py \
  --fasta_paths=query.fasta \
  --output_dir=output/ \
  --model_preset=monomer \
  --max_template_date=2026-01-01

Option 3: ESMFold (fast single-chain)

modal run modal_esmfold.py \
  --sequence "MKTAYIAKQRQISFVK..."

Key parameters

ParameterDefaultOptionsDescription
--model_presetmonomermonomer/multimerModel type
--num_recycle31-20Recycling iterations
--max_template_date-YYYY-MM-DDTemplate cutoff
--use_templatesTrueTrue/FalseUse template search

Output format

output/
├── ranked_0.pdb           # Best model
├── ranked_1.pdb           # Second best
├── ranking_debug.json     # Confidence scores
├── result_model_1.pkl     # Full results
├── msas/                  # MSA files
└── features.pkl           # Input features

Extracting metrics

import pickle

with open('result_model_1.pkl', 'rb') as f:
    result = pickle.load(f)

plddt = result['plddt']
ptm = result['ptm']
iptm = result.get('iptm', None)  # Multimer only
pae = result['predicted_aligned_error']

Sample output

Successful run

$ python run_alphafold.py --fasta_paths complex.fasta --model_preset multimer
[INFO] Running MSA search...
[INFO] Running model 1/5...
[INFO] Running model 5/5...
[INFO] Relaxing structures...

Results:
  ranked_0.pdb:
    pLDDT: 87.3 (mean)
    pTM: 0.78
    ipTM: 0.62
    PAE (interface): 8.5

Saved to output/

What good output looks like:

  • pLDDT: > 85 (mean, on 0-100 scale) or > 0.85 (normalized)
  • pTM: > 0.70
  • ipTM: > 0.50 for complexes
  • PAE_interface: < 10

Decision tree

Should I use AlphaFold?
│
├─ What are you predicting?
│  ├─ Single protein → ESMFold (faster)
│  ├─ Protein-protein complex → AlphaFold/ColabFold ✓
│  ├─ Protein + ligand → Chai or Boltz
│  └─ Batch of sequences → ColabFold ✓
│
├─ What do you need?
│  ├─ Highest accuracy → AlphaFold/ColabFold ✓
│  ├─ Fast screening → ESMFold
│  └─ MSA-free prediction → Chai or ESMFold
│
└─ Which AF2 option?
   ├─ Local installation → Full control, slow setup
   ├─ ColabFold → Easier, MSA server
   └─ Modal → Recommended for batch

Typical performance

Campaign SizeTime (A100)Cost (Modal)Notes
100 complexes1-2h~$8With MSA server
500 complexes5-10h~$40Standard campaign
1000 complexes10-20h~$80Large campaign

Per-complex: ~30-60s with MSA server.


Verify

find output -name "ranked_0.pdb" | wc -l  # Should match input count

Troubleshooting

Low pLDDT regions: May indicate disorder or poor design Low ipTM: Interface not confident, check hotspots High PAE off-diagonal: Chains may not interact OOM errors: Use ColabFold with MSA server instead

Error interpretation

ErrorCauseFix
RuntimeError: CUDA out of memorySequence too longUse A100 or split prediction
KeyError: 'iptm'Running monomer on complexUse multimer preset
FileNotFoundError: databaseMissing MSA databasesUse ColabFold MSA server
TimeoutErrorMSA search slowReduce num_recycles

Next: protein-qc for filtering and ranking.

Score

Total Score

60/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

0/5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon