Back to list
Who-Visions

filesearch

by Who-Visions

🌙 AI-powered creative intelligence system for worldbuilding, content generation & web research | Powered by Gemini 3 & Vertex AI | FastAPI server with smart routing, memory systems & Notion integration

1🍴 0📅 Jan 24, 2026

SKILL.md


name: filesearch version: 1.0.0 description: Gemini File Search (RAG) - semantic search over your documents

File Search Skill (Gemini RAG)

Enable Retrieval Augmented Generation (RAG) using Gemini's File Search API. Upload documents, create knowledge stores, and query with semantic search.

Features

  • Semantic Search: Find relevant info by meaning, not just keywords
  • Auto Chunking: Documents automatically split and indexed
  • Free Storage: No cost for storage or query-time embeddings
  • Citations: Responses include source references
  • Structured Output: Get typed responses (Gemini 3+)

Capabilities

ActionDescription
create_storeCreate a new file search store
upload_fileUpload and index a file
queryQuery the store with semantic search
list_storesList all file search stores
list_documentsList documents in a store
delete_storeDelete a store
delete_documentDelete a document from store

Supported File Types

  • Documents: PDF, Word, Excel, PowerPoint
  • Code: Python, JS, TS, Java, Go, Rust, etc.
  • Text: Markdown, TXT, CSV, JSON, XML, YAML
  • Web: HTML, CSS

Usage Examples

Create Store and Upload Files

from rhea_noir.skills.filesearch.actions import skill as fs

# Create a knowledge store
store = fs.create_store("rhea-knowledge-base")

# Upload documents
fs.upload_file(store, "./docs/architecture.md")
fs.upload_file(store, "./docs/api-reference.pdf")
result = fs.query(
    store_name=store,
    question="How does the authentication system work?",
    model="gemini-3-flash-preview"
)
print(result["answer"])
print(result["citations"])

Add Metadata for Filtering

fs.upload_file(
    store,
    "./books/i-claudius.txt",
    metadata={"author": "Robert Graves", "year": 1934}
)

# Query with filter
result = fs.query(
    store_name=store,
    question="What happened to Claudius?",
    metadata_filter='author="Robert Graves"'
)

Structured Output

from pydantic import BaseModel

class Summary(BaseModel):
    title: str
    key_points: list[str]
    
result = fs.query_structured(
    store_name=store,
    question="Summarize the main architecture",
    response_schema=Summary
)

Pricing

  • Indexing: $0.15 per 1M tokens (one-time)
  • Storage: FREE
  • Query embeddings: FREE
  • Retrieved tokens: Normal Gemini pricing

Limits

TierMax Store Size
Free1 GB
Tier 110 GB
Tier 2100 GB
Tier 31 TB

[!NOTE] Keep stores under 20 GB for optimal retrieval latency.

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon