← Back to list

filesearch
by Who-Visions
🌙 AI-powered creative intelligence system for worldbuilding, content generation & web research | Powered by Gemini 3 & Vertex AI | FastAPI server with smart routing, memory systems & Notion integration
⭐ 1🍴 0📅 Jan 24, 2026
SKILL.md
name: filesearch version: 1.0.0 description: Gemini File Search (RAG) - semantic search over your documents
File Search Skill (Gemini RAG)
Enable Retrieval Augmented Generation (RAG) using Gemini's File Search API. Upload documents, create knowledge stores, and query with semantic search.
Features
- Semantic Search: Find relevant info by meaning, not just keywords
- Auto Chunking: Documents automatically split and indexed
- Free Storage: No cost for storage or query-time embeddings
- Citations: Responses include source references
- Structured Output: Get typed responses (Gemini 3+)
Capabilities
| Action | Description |
|---|---|
create_store | Create a new file search store |
upload_file | Upload and index a file |
query | Query the store with semantic search |
list_stores | List all file search stores |
list_documents | List documents in a store |
delete_store | Delete a store |
delete_document | Delete a document from store |
Supported File Types
- Documents: PDF, Word, Excel, PowerPoint
- Code: Python, JS, TS, Java, Go, Rust, etc.
- Text: Markdown, TXT, CSV, JSON, XML, YAML
- Web: HTML, CSS
Usage Examples
Create Store and Upload Files
from rhea_noir.skills.filesearch.actions import skill as fs
# Create a knowledge store
store = fs.create_store("rhea-knowledge-base")
# Upload documents
fs.upload_file(store, "./docs/architecture.md")
fs.upload_file(store, "./docs/api-reference.pdf")
Query with Semantic Search
result = fs.query(
store_name=store,
question="How does the authentication system work?",
model="gemini-3-flash-preview"
)
print(result["answer"])
print(result["citations"])
Add Metadata for Filtering
fs.upload_file(
store,
"./books/i-claudius.txt",
metadata={"author": "Robert Graves", "year": 1934}
)
# Query with filter
result = fs.query(
store_name=store,
question="What happened to Claudius?",
metadata_filter='author="Robert Graves"'
)
Structured Output
from pydantic import BaseModel
class Summary(BaseModel):
title: str
key_points: list[str]
result = fs.query_structured(
store_name=store,
question="Summarize the main architecture",
response_schema=Summary
)
Pricing
- Indexing: $0.15 per 1M tokens (one-time)
- Storage: FREE
- Query embeddings: FREE
- Retrieved tokens: Normal Gemini pricing
Limits
| Tier | Max Store Size |
|---|---|
| Free | 1 GB |
| Tier 1 | 10 GB |
| Tier 2 | 100 GB |
| Tier 3 | 1 TB |
[!NOTE] Keep stores under 20 GB for optimal retrieval latency.
Score
Total Score
65/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
○LICENSE
ライセンスが設定されている
0/10
✓説明文
100文字以上の説明がある
+10
○人気
GitHub Stars 100以上
0/15
✓最近の活動
1ヶ月以内に更新
+10
○フォーク
10回以上フォークされている
0/5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon


