
effect-patterns-tooling-and-debugging
by PaulJPhilp
A community-driven knowledge base of practical patterns for Effect-TS.
SKILL.md
name: effect-patterns-tooling-and-debugging description: Effect-TS patterns for Tooling And Debugging. Use when working with tooling and debugging in Effect-TS applications.
Effect-TS Patterns: Tooling And Debugging
This skill provides 8 curated Effect-TS patterns for tooling and debugging. Use this skill when working on tasks related to:
- tooling and debugging
- Best practices in Effect-TS applications
- Real-world patterns and solutions
🟢 Beginner Patterns
Read Effect Type Errors
Rule: Effect errors are verbose but structured - learn to extract the key information.
Rationale:
Effect type errors can be long, but they follow a pattern. Learn to scan for the key parts.
Effect's type system catches many bugs at compile time, but:
- Effect types are complex - Three type parameters
- Errors are nested - Multiple layers of generics
- Messages are verbose - TypeScript shows everything
Understanding the pattern makes errors manageable.
Set Up Your Effect Development Environment
Rule: Install the Effect extension and configure TypeScript for optimal Effect development.
Rationale:
Set up your development environment with the Effect extension and proper TypeScript configuration for the best experience.
A well-configured environment helps you:
- See types clearly - Effect types can be complex
- Get better autocomplete - Know what methods are available
- Catch errors early - TypeScript finds problems
- Navigate easily - Go to definitions, find references
🟡 Intermediate Patterns
Supercharge Your Editor with the Effect LSP
Rule: Install and use the Effect LSP extension for enhanced type information and error checking in your editor.
Good Example:
Imagine you have the following code. Without the LSP, hovering over program might show a complex, hard-to-read inferred type.
import { Effect } from "effect";
// Define Logger service using Effect.Service pattern
class Logger extends Effect.Service<Logger>()("Logger", {
sync: () => ({
log: (msg: string) => Effect.log(`LOG: ${msg}`),
}),
}) {}
const program = Effect.succeed(42).pipe(
Effect.map((n) => n.toString()),
Effect.flatMap((s) => Effect.log(s)),
Effect.provide(Logger.Default)
);
// Run the program
Effect.runPromise(program);
With the Effect LSP installed, your editor would display a clear, readable overlay right above the program variable, looking something like this:
// (LSP Inlay Hint)
// program: Effect<void, never, never>
This immediately tells you that the final program returns nothing (void), has no expected failures (never), and has no remaining requirements (never), so it's ready to be run.
Anti-Pattern:
Going without the LSP. While your code will still compile and work perfectly fine, you are essentially "flying blind." You miss out on the rich, real-time feedback that the LSP provides, forcing you to rely more heavily on manual type checking, tsc runs, and deciphering complex inferred types from your editor's default tooltips. This leads to a slower, less efficient development cycle.
Rationale:
To significantly improve your development experience with Effect, install the official Effect Language Server (LSP) extension for your code editor (e.g., the "Effect" extension in VS Code).
Effect's type system is incredibly powerful, but TypeScript's default language server doesn't always display the rich information contained within the A, E, and R channels in the most intuitive way.
The Effect LSP is a specialized tool that understands the semantics of Effect. It hooks into your editor to provide a superior experience:
- Rich Inline Types: It displays the full
Effect<A, E, R>signature directly in your code as you work, so you always know exactly what an effect produces, how it can fail, and what it requires. - Clear Error Messages: It provides more specific and helpful error messages tailored to Effect's APIs.
- Enhanced Autocompletion: It can offer more context-aware suggestions.
This tool essentially makes the compiler's knowledge visible at a glance, reducing the mental overhead of tracking complex types and allowing you to catch errors before you even save the file.
Use Effect DevTools
Rule: Use Effect's built-in debugging features and logging for development.
Good Example:
1. Enable Debug Mode
import { Effect, Logger, LogLevel, FiberRef, Cause } from "effect"
// ============================================
// 1. Verbose logging for development
// ============================================
const debugProgram = Effect.gen(function* () {
yield* Effect.logDebug("Starting operation")
const result = yield* someEffect.pipe(
Effect.tap((value) => Effect.logDebug(`Got value: ${value}`))
)
yield* Effect.logDebug("Operation complete")
return result
})
// Run with debug logging enabled
const runWithDebug = debugProgram.pipe(
Logger.withMinimumLogLevel(LogLevel.Debug),
Effect.runPromise
)
// ============================================
// 2. Fiber supervision and introspection
// ============================================
const inspectFibers = Effect.gen(function* () {
// Fork some fibers
const fiber1 = yield* Effect.fork(Effect.sleep("1 second"))
const fiber2 = yield* Effect.fork(Effect.sleep("2 seconds"))
// Get fiber IDs
yield* Effect.log(`Fiber 1 ID: ${fiber1.id()}`)
yield* Effect.log(`Fiber 2 ID: ${fiber2.id()}`)
// Check fiber status
const status1 = yield* fiber1.status
yield* Effect.log(`Fiber 1 status: ${status1._tag}`)
})
// ============================================
// 3. Trace execution with spans
// ============================================
const tracedProgram = Effect.gen(function* () {
yield* Effect.log("=== Starting traced program ===")
yield* Effect.gen(function* () {
yield* Effect.log("Step 1: Initialize")
yield* Effect.sleep("100 millis")
}).pipe(Effect.withLogSpan("initialization"))
yield* Effect.gen(function* () {
yield* Effect.log("Step 2: Process")
yield* Effect.sleep("200 millis")
}).pipe(Effect.withLogSpan("processing"))
yield* Effect.gen(function* () {
yield* Effect.log("Step 3: Finalize")
yield* Effect.sleep("50 millis")
}).pipe(Effect.withLogSpan("finalization"))
yield* Effect.log("=== Program complete ===")
})
// ============================================
// 4. Error cause inspection
// ============================================
const debugErrors = Effect.gen(function* () {
const failingEffect = Effect.gen(function* () {
yield* Effect.fail(new Error("Inner error"))
}).pipe(
Effect.flatMap(() => Effect.fail(new Error("Outer error")))
)
yield* failingEffect.pipe(
Effect.catchAllCause((cause) =>
Effect.gen(function* () {
yield* Effect.log("=== Error Cause Analysis ===")
yield* Effect.log(`Pretty printed:\n${Cause.pretty(cause)}`)
yield* Effect.log(`Is failure: ${Cause.isFailure(cause)}`)
yield* Effect.log(`Is interrupted: ${Cause.isInterrupted(cause)}`)
// Extract all failures
const failures = Cause.failures(cause)
yield* Effect.log(`Failures: ${JSON.stringify([...failures])}`)
return "recovered"
})
)
)
})
// ============================================
// 5. Context inspection
// ============================================
import { Context } from "effect"
class Config extends Context.Tag("Config")<Config, { debug: boolean }>() {}
const inspectContext = Effect.gen(function* () {
const context = yield* Effect.context<Config>()
yield* Effect.log("=== Context Contents ===")
yield* Effect.log(`Has Config: ${Context.getOption(context, Config)._tag}`)
})
// ============================================
// 6. Custom logger for development
// ============================================
const devLogger = Logger.make(({ logLevel, message, date, annotations, spans }) => {
const timestamp = date.toISOString()
const level = logLevel.label.padEnd(7)
const spanInfo = spans.length > 0
? ` [${[...spans].map(([name]) => name).join(" > ")}]`
: ""
const annotationInfo = Object.keys(annotations).length > 0
? ` ${JSON.stringify(Object.fromEntries(annotations))}`
: ""
console.log(`${timestamp} ${level}${spanInfo} ${message}${annotationInfo}`)
})
const withDevLogger = <A, E, R>(effect: Effect.Effect<A, E, R>) =>
effect.pipe(
Effect.provide(Logger.replace(Logger.defaultLogger, devLogger))
)
// ============================================
// 7. Runtime metrics
// ============================================
const showRuntimeMetrics = Effect.gen(function* () {
const runtime = yield* Effect.runtime()
yield* Effect.log("=== Runtime Info ===")
// Access runtime configuration
const fiberRefs = runtime.fiberRefs
yield* Effect.log("FiberRefs available")
})
// ============================================
// 8. Putting it all together
// ============================================
const debugSession = Effect.gen(function* () {
yield* Effect.log("Starting debug session")
// Run with all debugging enabled
yield* tracedProgram.pipe(
withDevLogger,
Logger.withMinimumLogLevel(LogLevel.Debug)
)
yield* debugErrors
yield* Effect.log("Debug session complete")
})
Effect.runPromise(debugSession)
Debug Output Example
2024-01-15T10:30:00.000Z DEBUG [initialization] Step 1: Initialize
2024-01-15T10:30:00.100Z DEBUG [processing] Step 2: Process
2024-01-15T10:30:00.300Z DEBUG [finalization] Step 3: Finalize
2024-01-15T10:30:00.350Z INFO Program complete
Rationale:
Use Effect's built-in debugging capabilities, logging, and fiber introspection for development.
Effect DevTools help you:
- See fiber state - What's running, blocked, completed
- Trace execution - Follow the flow of effects
- Debug errors - Understand failure chains
- Profile performance - Find slow operations
Configure Linting for Effect
Rule: Use Biome for fast linting with Effect-friendly configuration.
Good Example:
1. Biome Configuration (Recommended)
// biome.json
{
"$schema": "https://biomejs.dev/schemas/1.8.0/schema.json",
"organizeImports": {
"enabled": true
},
"linter": {
"enabled": true,
"rules": {
"recommended": true,
"complexity": {
"noExcessiveCognitiveComplexity": "warn",
"noForEach": "off", // Effect uses forEach patterns
"useLiteralKeys": "off" // Effect uses computed keys
},
"correctness": {
"noUnusedVariables": "error",
"noUnusedImports": "error",
"useExhaustiveDependencies": "warn"
},
"style": {
"noNonNullAssertion": "warn",
"useConst": "error",
"noParameterAssign": "error"
},
"suspicious": {
"noExplicitAny": "warn",
"noConfusingVoidType": "off" // Effect uses void
},
"nursery": {
"noRestrictedImports": {
"level": "error",
"options": {
"paths": {
"lodash": "Use Effect functions instead",
"ramda": "Use Effect functions instead"
}
}
}
}
}
},
"formatter": {
"enabled": true,
"indentStyle": "space",
"indentWidth": 2,
"lineWidth": 100
},
"javascript": {
"formatter": {
"semicolons": "asNeeded",
"quoteStyle": "double",
"trailingComma": "es5"
}
},
"files": {
"ignore": [
"node_modules",
"dist",
"coverage",
"*.gen.ts"
]
}
}
2. ESLint Configuration (Alternative)
// eslint.config.js
import eslint from "@eslint/js"
import tseslint from "typescript-eslint"
export default tseslint.config(
eslint.configs.recommended,
...tseslint.configs.strictTypeChecked,
{
languageOptions: {
parserOptions: {
project: true,
tsconfigRootDir: import.meta.dirname,
},
},
rules: {
// TypeScript strict rules
"@typescript-eslint/no-unused-vars": [
"error",
{ argsIgnorePattern: "^_" }
],
"@typescript-eslint/no-explicit-any": "warn",
"@typescript-eslint/explicit-function-return-type": "off",
"@typescript-eslint/no-floating-promises": "error",
// Effect-friendly rules
"@typescript-eslint/no-confusing-void-expression": "off",
"@typescript-eslint/no-misused-promises": [
"error",
{ checksVoidReturn: false }
],
// Style rules
"prefer-const": "error",
"no-var": "error",
"object-shorthand": "error",
"prefer-template": "error",
},
},
{
files: ["**/*.test.ts"],
rules: {
"@typescript-eslint/no-explicit-any": "off",
},
},
{
ignores: ["dist/", "coverage/", "node_modules/"],
}
)
3. Package.json Scripts
{
"scripts": {
"lint": "biome check .",
"lint:fix": "biome check --apply .",
"lint:ci": "biome ci .",
"format": "biome format --write .",
"format:check": "biome format ."
}
}
4. VS Code Integration
// .vscode/settings.json
{
"editor.defaultFormatter": "biomejs.biome",
"editor.formatOnSave": true,
"editor.codeActionsOnSave": {
"quickfix.biome": "explicit",
"source.organizeImports.biome": "explicit"
},
"[typescript]": {
"editor.defaultFormatter": "biomejs.biome"
},
"[typescriptreact]": {
"editor.defaultFormatter": "biomejs.biome"
}
}
5. Pre-commit Hook
// package.json
{
"scripts": {
"prepare": "husky"
}
}
# .husky/pre-commit
bun run lint:ci
bun run typecheck
6. Effect-Specific Rules to Consider
// Custom rules you might want
// ❌ Bad: Using Promise where Effect should be used
const fetchData = async () => { } // Warn in Effect codebase
// ✅ Good: Using Effect
const fetchData = Effect.gen(function* () { })
// ❌ Bad: Throwing errors
const validate = (x: unknown) => {
if (!x) throw new Error("Invalid") // Error
}
// ✅ Good: Returning Effect with error
const validate = (x: unknown) =>
x ? Effect.succeed(x) : Effect.fail(new ValidationError())
// ❌ Bad: Using null/undefined directly
const maybeValue: string | null = null // Warn
// ✅ Good: Using Option
const maybeValue: Option.Option<string> = Option.none()
Rationale:
Configure Biome (recommended) or ESLint with rules that work well with Effect's functional patterns.
Good linting for Effect:
- Catches errors - Unused variables, missing awaits
- Enforces style - Consistent code across team
- Avoids antipatterns - No implicit any, proper typing
- Fast feedback - Errors in editor immediately
Set Up CI/CD for Effect Projects
Rule: Use GitHub Actions with proper caching for fast Effect project CI/CD.
Good Example:
1. Basic GitHub Actions Workflow
# .github/workflows/ci.yml
name: CI
on:
push:
branches: [main]
pull_request:
branches: [main]
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
node-version: [20.x, 22.x]
steps:
- uses: actions/checkout@v4
- name: Setup Bun
uses: oven-sh/setup-bun@v1
with:
bun-version: latest
- name: Install dependencies
run: bun install
- name: Type check
run: bun run typecheck
- name: Lint
run: bun run lint
- name: Test
run: bun run test
- name: Build
run: bun run build
2. With Caching
# .github/workflows/ci-cached.yml
name: CI (Cached)
on:
push:
branches: [main]
pull_request:
branches: [main]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Setup Bun
uses: oven-sh/setup-bun@v1
with:
bun-version: latest
# Cache Bun dependencies
- name: Cache dependencies
uses: actions/cache@v4
with:
path: |
~/.bun/install/cache
node_modules
key: ${{ runner.os }}-bun-${{ hashFiles('**/bun.lockb') }}
restore-keys: |
${{ runner.os }}-bun-
- name: Install dependencies
run: bun install
# Cache TypeScript build info
- name: Cache TypeScript
uses: actions/cache@v4
with:
path: |
.tsbuildinfo
dist
key: ${{ runner.os }}-tsc-${{ hashFiles('**/tsconfig.json', 'src/**/*.ts') }}
restore-keys: |
${{ runner.os }}-tsc-
- name: Type check
run: bun run typecheck
- name: Lint
run: bun run lint
- name: Test
run: bun run test --coverage
- name: Upload coverage
uses: codecov/codecov-action@v4
with:
files: ./coverage/lcov.info
3. Package.json Scripts
{
"scripts": {
"typecheck": "tsc --noEmit",
"lint": "biome check .",
"lint:fix": "biome check --apply .",
"test": "vitest run",
"test:watch": "vitest",
"test:coverage": "vitest run --coverage",
"build": "tsc",
"clean": "rm -rf dist .tsbuildinfo"
}
}
4. Multi-Stage Workflow
# .github/workflows/ci-full.yml
name: CI Full
on:
push:
branches: [main]
pull_request:
branches: [main]
jobs:
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: oven-sh/setup-bun@v1
- run: bun install
- run: bun run lint
typecheck:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: oven-sh/setup-bun@v1
- run: bun install
- run: bun run typecheck
test:
runs-on: ubuntu-latest
needs: [lint, typecheck]
steps:
- uses: actions/checkout@v4
- uses: oven-sh/setup-bun@v1
- run: bun install
- run: bun run test
build:
runs-on: ubuntu-latest
needs: [test]
steps:
- uses: actions/checkout@v4
- uses: oven-sh/setup-bun@v1
- run: bun install
- run: bun run build
- uses: actions/upload-artifact@v4
with:
name: dist
path: dist/
deploy:
runs-on: ubuntu-latest
needs: [build]
if: github.ref == 'refs/heads/main'
steps:
- uses: actions/download-artifact@v4
with:
name: dist
# Add deployment steps
5. Release Workflow
# .github/workflows/release.yml
name: Release
on:
push:
tags:
- 'v*'
jobs:
release:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- uses: oven-sh/setup-bun@v1
- run: bun install
- run: bun run build
- run: bun run test
- name: Create Release
uses: softprops/action-gh-release@v1
with:
files: dist/*
generate_release_notes: true
Rationale:
Set up CI/CD with type checking, testing, and optional deployment stages optimized for Effect projects.
CI/CD for Effect projects ensures:
- Type safety - Catch type errors before merge
- Test coverage - Run tests automatically
- Consistent builds - Same environment every time
- Fast feedback - Know quickly if something broke
🟠 Advanced Patterns
Profile Effect Applications
Rule: Use Effect's timing features and Node.js profilers to find performance bottlenecks.
Good Example:
1. Basic Timing with Spans
import { Effect, Duration } from "effect"
// ============================================
// 1. Time individual operations
// ============================================
const timeOperation = <A, E, R>(
name: string,
effect: Effect.Effect<A, E, R>
) =>
Effect.gen(function* () {
const startTime = Date.now()
const result = yield* effect
const duration = Date.now() - startTime
yield* Effect.log(`${name}: ${duration}ms`)
return result
})
// Usage
const program = Effect.gen(function* () {
yield* timeOperation("database-query", queryDatabase())
yield* timeOperation("api-call", callExternalApi())
yield* timeOperation("processing", processData())
})
// ============================================
// 2. Use withLogSpan for nested timing
// ============================================
const timedProgram = Effect.gen(function* () {
yield* Effect.log("Starting")
yield* fetchUsers().pipe(Effect.withLogSpan("fetchUsers"))
yield* processUsers().pipe(Effect.withLogSpan("processUsers"))
yield* saveResults().pipe(Effect.withLogSpan("saveResults"))
yield* Effect.log("Complete")
}).pipe(Effect.withLogSpan("total"))
// ============================================
// 3. Collect timing metrics
// ============================================
import { Metric } from "effect"
const operationDuration = Metric.histogram("operation_duration_ms", {
description: "Operation duration in milliseconds",
boundaries: [1, 5, 10, 25, 50, 100, 250, 500, 1000],
})
const profiledEffect = <A, E, R>(
name: string,
effect: Effect.Effect<A, E, R>
) =>
Effect.gen(function* () {
const startTime = Date.now()
const result = yield* effect
const duration = Date.now() - startTime
yield* Metric.update(
operationDuration.pipe(Metric.tagged("operation", name)),
duration
)
return result
})
// ============================================
// 4. Memory profiling
// ============================================
const logMemoryUsage = Effect.sync(() => {
const usage = process.memoryUsage()
return {
heapUsed: Math.round(usage.heapUsed / 1024 / 1024),
heapTotal: Math.round(usage.heapTotal / 1024 / 1024),
external: Math.round(usage.external / 1024 / 1024),
rss: Math.round(usage.rss / 1024 / 1024),
}
})
const withMemoryLogging = <A, E, R>(effect: Effect.Effect<A, E, R>) =>
Effect.gen(function* () {
const before = yield* logMemoryUsage
yield* Effect.log(`Memory before: ${JSON.stringify(before)}MB`)
const result = yield* effect
const after = yield* logMemoryUsage
yield* Effect.log(`Memory after: ${JSON.stringify(after)}MB`)
yield* Effect.log(`Memory delta: ${after.heapUsed - before.heapUsed}MB`)
return result
})
// ============================================
// 5. CPU profiling with Node.js inspector
// ============================================
const withCpuProfile = <A, E, R>(
name: string,
effect: Effect.Effect<A, E, R>
) =>
Effect.gen(function* () {
// Start CPU profiler (requires --inspect flag)
const inspector = yield* Effect.try(() => {
const { Session } = require("inspector")
const session = new Session()
session.connect()
return session
})
yield* Effect.try(() => {
inspector.post("Profiler.enable")
inspector.post("Profiler.start")
})
const result = yield* effect
// Stop and save profile
yield* Effect.async<void>((resume) => {
inspector.post("Profiler.stop", (err: Error, { profile }: any) => {
if (err) {
resume(Effect.fail(err))
} else {
const fs = require("fs")
fs.writeFileSync(
`${name}-${Date.now()}.cpuprofile`,
JSON.stringify(profile)
)
resume(Effect.void)
}
})
})
return result
})
// ============================================
// 6. Benchmark specific operations
// ============================================
const benchmark = <A, E, R>(
name: string,
effect: Effect.Effect<A, E, R>,
iterations: number = 100
) =>
Effect.gen(function* () {
const times: number[] = []
for (let i = 0; i < iterations; i++) {
const start = performance.now()
yield* effect
times.push(performance.now() - start)
}
const sorted = times.sort((a, b) => a - b)
const stats = {
min: sorted[0],
max: sorted[sorted.length - 1],
median: sorted[Math.floor(sorted.length / 2)],
p95: sorted[Math.floor(sorted.length * 0.95)],
p99: sorted[Math.floor(sorted.length * 0.99)],
mean: times.reduce((a, b) => a + b, 0) / times.length,
}
yield* Effect.log(`Benchmark "${name}" (${iterations} iterations):`)
yield* Effect.log(` Min: ${stats.min.toFixed(2)}ms`)
yield* Effect.log(` Max: ${stats.max.toFixed(2)}ms`)
yield* Effect.log(` Mean: ${stats.mean.toFixed(2)}ms`)
yield* Effect.log(` Median: ${stats.median.toFixed(2)}ms`)
yield* Effect.log(` P95: ${stats.p95.toFixed(2)}ms`)
yield* Effect.log(` P99: ${stats.p99.toFixed(2)}ms`)
return stats
})
// ============================================
// 7. Profile concurrent operations
// ============================================
const profileConcurrency = Effect.gen(function* () {
const items = Array.from({ length: 100 }, (_, i) => i)
// Sequential
yield* benchmark(
"sequential",
Effect.forEach(items, (i) => Effect.succeed(i * 2), { concurrency: 1 }),
10
)
// Parallel unbounded
yield* benchmark(
"parallel-unbounded",
Effect.forEach(items, (i) => Effect.succeed(i * 2), {
concurrency: "unbounded",
}),
10
)
// Parallel limited
yield* benchmark(
"parallel-10",
Effect.forEach(items, (i) => Effect.succeed(i * 2), { concurrency: 10 }),
10
)
})
// ============================================
// 8. Run profiling
// ============================================
const profilingSession = Effect.gen(function* () {
yield* Effect.log("=== Profiling Session ===")
yield* withMemoryLogging(
benchmark("my-operation", someEffect, 50)
)
yield* profileConcurrency
})
Effect.runPromise(profilingSession)
Rationale:
Profile Effect applications using built-in timing spans, metrics, and Node.js profiling tools.
Profiling helps you:
- Find bottlenecks - What's slow?
- Optimize hot paths - Focus effort where it matters
- Track regressions - Catch slowdowns early
- Right-size resources - Don't over-provision
Teach your AI Agents Effect with the MCP Server
Rule: Use the MCP server to provide live application context to AI coding agents, enabling more accurate assistance.
Good Example:
The "Good Example" is the workflow this pattern enables.
-
You run the MCP server in your terminal, pointing it at your main
AppLayer.npx @effect/mcp-server --layer src/layers.ts:AppLayer -
You configure your AI agent (e.g., Cursor) to use the MCP server's endpoint (
http://localhost:3333). -
You ask the AI a question that requires deep context about your app:
"Refactor this code to use the
UserServiceto fetch a user by ID and log the result with theLogger." -
The AI, in the background, queries the MCP server:
- It discovers that
UserServiceandLoggerare available in theAppLayer. - It retrieves the exact method signature for
UserService.getUserandLogger.log.
- It discovers that
-
The AI generates correct, context-aware code because it's not guessing; it's using the live architectural information provided by the MCP server.
// The AI generates this correct code:
import { Effect } from "effect";
import { UserService } from "./features/User/UserService.js";
const program = Effect.gen(function* () {
const userService = yield* UserService;
const user = yield* userService.getUser("123");
yield* Effect.log(`Found user: ${user.name}`);
});
Anti-Pattern:
Working with an AI agent without providing it with specific context. The agent will be forced to guess based on open files or generic knowledge. This often leads to it hallucinating method names, getting dependency injection wrong, or failing to handle specific error types, requiring you to manually correct its output and defeating the purpose of using an AI assistant.
Rationale:
To enable AI coding agents (like Cursor or custom bots) to provide highly accurate, context-aware assistance for your Effect application, run the Effect MCP (Meta-Circular-Protocol) server. This tool exposes your application's entire dependency graph and service structure in a machine-readable format.
AI coding agents are powerful, but they often lack the deep, structural understanding of a complex Effect application. They might not know which services are available in the context, what a specific Layer provides, or how your feature modules are composed.
The MCP server solves this problem. It's a specialized server that runs alongside your application during development. It inspects your AppLayer and creates a real-time, queryable model of your entire application architecture.
An AI agent can then connect to this MCP server to ask specific questions before generating code, such as:
- "What services are available in the current context?"
- "What is the full API of the
UserService?" - "What errors can
UserRepository.findByIdfail with?"
By providing this live, ground-truth context, you transform your AI from a generic coding assistant into a specialized expert on your specific codebase, resulting in far more accurate and useful code generation and refactoring.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 500以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon


