
toolfs-memory
by IceWhaleTech
🗂 ToolFS: A FUSE virtual filesystem for AI Agents, integrating memory, RAG & local data access with flexible MCP/tool chaining and a scalable plugin system
SKILL.md
name: toolfs-memory description: Persistent key-value storage for session data, conversation context, and agent state. Use this skill when the user requests storing or retrieving memory entries such as "Store this in memory", "Remember this preference", "Recall the previous conversation", or "List all memory entries". metadata: author: toolfs version: "1.0.0" module: memory
ToolFS Memory
Persistent key-value storage for session data, conversation context, and agent state. Memory entries can store any JSON-serializable data with optional metadata for categorization and organization.
How It Works
- Memory Store: Stores entries in a key-value format with optional metadata
- Session Persistence: Entries persist across agent sessions
- Metadata Support: Each entry can include metadata for categorization and search
- CRUD Operations: Full create, read, update, delete operations supported
Usage
Read Memory Entry
ToolFS Path:
/toolfs/memory/<entry_id>
Example:
GET /toolfs/memory/user-preferences-123
// Response
{
"id": "user-preferences-123",
"content": "User prefers dark mode and compact layout",
"created_at": "2024-01-15T10:30:00Z",
"updated_at": "2024-01-15T10:30:00Z",
"metadata": {
"category": "preferences",
"priority": "high"
}
}
Write Memory Entry
ToolFS Path:
/toolfs/memory/<entry_id>
Example:
PUT /toolfs/memory/conversation-456
Content-Type: application/json
{
"content": "Discussed ToolFS architecture and skill system",
"metadata": {
"topic": "toolfs",
"participants": ["user", "agent"],
"timestamp": "2024-01-15T14:20:00Z"
}
}
// Response
{
"success": true,
"message": "Memory entry written"
}
List Memory Entries
ToolFS Path:
/toolfs/memory
Example:
LIST /toolfs/memory
// Response
[
"user-preferences-123",
"conversation-456",
"session-state-789"
]
When to Use This Skill
Use Memory skill when you need to:
- Store Context: Save conversation summaries, user preferences, or agent state
- Persist Data: Keep information across sessions or conversations
- Organize Information: Use metadata to categorize and retrieve related entries
- Recall Information: Retrieve previously stored data by entry ID
Common use cases:
- "Store this conversation summary in memory"
- "Remember that the user prefers dark mode"
- "Save the current session state"
- "List all stored memories"
- "Retrieve the previous conversation context"
Entry Structure
Each memory entry contains:
- id: Unique identifier for the entry
- content: Main content of the entry (string)
- created_at: Timestamp when entry was created
- updated_at: Timestamp when entry was last updated
- metadata: Optional JSON object for additional information
Output Format
Memory operations return standardized result structures:
{
"type": "memory",
"source": "<entry_id>",
"content": {
"id": "<entry_id>",
"content": "...",
"created_at": "...",
"updated_at": "...",
"metadata": {}
},
"success": true,
"error": "error message if failed"
}
Present Results to User
When presenting memory results:
✓ Memory entry retrieved
ID: user-preferences-123
Content: User prefers dark mode and compact layout
Category: preferences
Priority: high
Created: 2024-01-15T10:30:00Z
Updated: 2024-01-15T10:30:00Z
✓ Memory entry stored
ID: conversation-456
Topic: toolfs
Stored successfully at 2024-01-15T14:20:00Z
Troubleshooting
Entry Not Found
If reading a memory entry fails:
- Verify the entry ID is correct
- Check if the entry exists using
LIST /toolfs/memory - Ensure the session has access to memory operations
Write Permission Error
If writing fails:
- Verify the session has write permissions
- Check memory store configuration
- Ensure entry ID is valid
Best Practices
- Use Descriptive IDs: Choose meaningful entry IDs for easy retrieval
- Include Metadata: Use metadata for categorization and filtering
- Update Timestamps: The system automatically tracks created_at and updated_at
- Organize by Category: Use metadata.category to group related entries
- Regular Cleanup: Periodically review and clean up old entries
This skill is part of ToolFS. See main SKILL.md for overview.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
