Back to list
IbIFACE-Tech

technical-documentation

by IbIFACE-Tech

Paracle is a framework for building AI native app and project.

0🍴 0📅 Jan 19, 2026

SKILL.md


name: technical-documentation description: Write clear technical documentation, API references, user guides, tutorials, and architecture docs. Use when creating or updating documentation. license: Apache-2.0 compatibility: Markdown, reStructuredText, MkDocs, Sphinx metadata: author: paracle-core-team version: "1.0.0" category: communication level: intermediate display_name: "Technical Documentation Writing" tags: - documentation - markdown - api-docs - guides - tutorials capabilities: - documentation_writing - api_documentation - tutorial_creation - user_guides - architecture_docs allowed-tools: Read Write

Technical Documentation Skill

When to use this skill

Use this skill when:

  • Writing user-facing documentation
  • Creating API references
  • Documenting architecture decisions
  • Writing tutorials and guides
  • Updating README files
  • Creating code examples
  • Writing docstrings

Paracle Documentation Structure

content/docs/
├── README.md                   # Documentation index
├── users/                      # User-facing documentation
│   ├── getting-started/        # Installation and first steps
│   │   ├── README.md
│   │   └── quickstart.md
│   ├── guides/                 # How-to guides
│   │   ├── installation.md
│   │   ├── agents.md
│   │   ├── workflows.md
│   │   └── skills.md
│   ├── tutorials/              # Step-by-step tutorials
│   └── reference/              # Reference documentation
├── technical/                  # Technical documentation (gitignored)
│   ├── architecture/           # System architecture
│   ├── concepts/               # Core concepts
│   └── modules/                # Package documentation
├── api/                        # API documentation
├── tools/                      # MCP & IDE tools docs
│   ├── ide-tools.md
│   └── github-cli-tool.md
├── meta/                       # Paracle Meta Engine docs
└── quickref/                   # Quick reference cards

Documentation Patterns

Pattern 1: README Structure

# Project Name

Brief one-sentence description.

## Overview

2-3 paragraphs explaining:
- What the project does
- Key features
- Why it's useful

## Quick Start

Minimal example to get started in <5 minutes:

\`\`\`bash
# Installation
pip install paracle

# Run
paracle init
paracle agents create my-agent
\`\`\`

## Features

- ✨ Feature 1 - Brief description
- 🚀 Feature 2 - Brief description
- 🔧 Feature 3 - Brief description

## Installation

Detailed installation instructions:

\`\`\`bash
# Using pip
pip install paracle

# Using uv
uv pip install paracle

# From source
git clone https://github.com/org/paracle
cd paracle
uv sync
\`\`\`

## Usage

Common use cases with code examples.

## Documentation

Link to full documentation: [docs.paracle.io](https://docs.paracle.io)

## Contributing

See [CONTRIBUTING.md](CONTRIBUTING.md)

## License

Apache 2.0 - See [LICENSE](LICENSE)

Pattern 2: Tutorial Structure

# Tutorial: Building Your First Agent

## What You'll Learn

- How to create an agent
- How to configure agent behavior
- How to run agent tasks

## Prerequisites

- Python 3.10+
- Paracle installed
- Basic Python knowledge

## Step 1: Create Agent Configuration

First, create a `.parac/` directory:

\`\`\`bash
paracle init
\`\`\`

This creates:

\`\`\`
.parac/
├── project.yaml
├── agents/
│   └── specs/
└── workflows/
\`\`\`

## Step 2: Define Your Agent

Create `.parac/agents/specs/my-agent.yaml`:

\`\`\`yaml
name: my-agent
model: gpt-4
temperature: 0.7
system_prompt: |
  You are a helpful coding assistant.
\`\`\`

## Step 3: Run Your Agent

\`\`\`bash
paracle agents run my-agent
\`\`\`

### Expected Output

\`\`\`
Agent: my-agent
Status: ready
>
\`\`\`

## Next Steps

- Learn about [agent inheritance](./agent-inheritance.md)
- Explore [skills](./skills.md)
- Build [workflows](./workflows.md)

## Troubleshooting

### Problem: Command not found

**Solution**: Ensure Paracle is installed and in your PATH.

\`\`\`bash
pip install paracle
which paracle  # Unix
where paracle  # Windows
\`\`\`

### Problem: Invalid configuration

**Solution**: Validate your YAML syntax:

\`\`\`bash
paracle config validate
\`\`\`

Pattern 3: API Reference

# Agent API Reference

## `Agent`

Represents an AI agent with specific capabilities and configuration.

### Constructor

\`\`\`python
Agent(spec: AgentSpec, provider: Provider | None = None)
\`\`\`

**Parameters:**

- `spec` (`AgentSpec`): Agent specification defining behavior
- `provider` (`Provider`, optional): LLM provider instance. Defaults to configured provider.

**Returns:** `Agent` instance

**Raises:**

- `ValidationError`: If spec is invalid
- `ProviderNotFoundError`: If provider not available

**Example:**

\`\`\`python
from paracle_domain import Agent, AgentSpec

spec = AgentSpec(
    name="my-agent",
    model="gpt-4",
    temperature=0.7,
)

agent = Agent(spec=spec)
\`\`\`

### Methods

#### `execute(task: str, context: dict | None = None) -> Result`

Execute a task with optional context.

**Parameters:**

- `task` (`str`): Task description
- `context` (`dict`, optional): Additional context

**Returns:** `Result` containing execution output

**Example:**

\`\`\`python
result = agent.execute(
    "Write a hello world function",
    context={"language": "python"},
)

print(result.output)
# def hello_world():
#     print("Hello, World!")
\`\`\`

## `AgentSpec`

Pydantic model for agent configuration.

### Fields

| Field           | Type          | Default   | Description                    |
| --------------- | ------------- | --------- | ------------------------------ |
| `name`          | `str`         | Required  | Unique agent name              |
| `model`         | `str`         | `"gpt-4"` | LLM model identifier           |
| `temperature`   | `float`       | `0.7`     | Sampling temperature (0.0-2.0) |
| `system_prompt` | `str \| None` | `None`    | Custom system prompt           |
| `max_tokens`    | `int \| None` | `None`    | Maximum output tokens          |
| `skills`        | `list[str]`   | `[]`      | Enabled skills                 |

### Validation

- `name`: 1-100 characters, alphanumeric and hyphens
- `temperature`: Must be between 0.0 and 2.0
- `model`: Must be supported by configured provider

Pattern 4: Architecture Documentation

# Paracle Architecture Overview

## System Context

Paracle is a multi-agent orchestration framework that enables users to:

1. Define agent behaviors via configuration
2. Orchestrate complex workflows
3. Integrate custom tools and skills

## High-Level Architecture

\`\`\`
┌─────────────────────────────────────────┐
│         User Configuration              │
│            (.parac/)                    │
├─────────────────────────────────────────┤
│        Application Layer                │
│      (CLI, API, Orchestrator)          │
├─────────────────────────────────────────┤
│          Domain Layer                   │
│  (Agents, Workflows, Tools, Skills)    │
├─────────────────────────────────────────┤
│       Infrastructure Layer              │
│  (Events, Storage, Providers)          │
├─────────────────────────────────────────┤
│          Adapters Layer                 │
│  (OpenAI, Anthropic, Azure, MCP)       │
└─────────────────────────────────────────┘
\`\`\`

## Key Components

### 1. Domain Layer

**Responsibility**: Core business logic

**Components**:
- `Agent`: Agent entity with execution logic
- `AgentSpec`: Agent configuration model
- `Workflow`: Workflow definition
- `Tool`: Tool interface

**Principles**:
- Pure domain logic
- No external dependencies
- Pydantic for validation

### 2. Application Layer

**Responsibility**: Application services and orchestration

**Components**:
- CLI: Command-line interface
- API: REST API endpoints
- Orchestrator: Workflow execution engine

### 3. Infrastructure Layer

**Responsibility**: Technical infrastructure

**Components**:
- Event Bus: Event publishing/subscription
- Storage: Persistence layer
- Logging: Structured logging

## Design Patterns

### Hexagonal Architecture (Ports & Adapters)

\`\`\`
     ┌──────────────┐
     │   Domain     │
     │    Core      │
     └──────┬───────┘
            │
    ┌───────┴───────┐
    │               │
┌───▼────┐     ┌───▼────┐
│  Port  │     │  Port  │
│Provider│     │Storage │
└───┬────┘     └───┬────┘
    │              │
┌───▼────┐     ┌───▼────┐
│Adapter │     │Adapter │
│OpenAI  │     │ SQLite │
└────────┘     └────────┘
\`\`\`

**Benefits**:
- Domain logic independent of infrastructure
- Easy to test (mock adapters)
- Pluggable implementations

## Data Flow

\`\`\`
User Request
    │
    ▼
┌─────────────┐
│  CLI/API    │ Validate input
└─────┬───────┘
      │
      ▼
┌─────────────┐
│ Application │ Business logic
└─────┬───────┘
      │
      ▼
┌─────────────┐
│   Domain    │ Execute agent
└─────┬───────┘
      │
      ▼
┌─────────────┐
│  Adapter    │ Call LLM provider
└─────┬───────┘
      │
      ▼
Response
\`\`\`

## Decision Records

See [Architecture Decisions](./decisions/) for ADRs.

Pattern 5: Code Examples

# Code Examples

## Basic Agent Usage

\`\`\`python
from paracle_domain import Agent, AgentSpec

# Create agent spec
spec = AgentSpec(
    name="coder",
    model="gpt-4",
    temperature=0.7,
    system_prompt="You are an expert Python developer.",
)

# Create agent
agent = Agent(spec=spec)

# Execute task
result = agent.execute("Write a fibonacci function")

print(result.output)
\`\`\`

**Output:**

\`\`\`python
def fibonacci(n):
    """Generate Fibonacci sequence up to n terms."""
    if n <= 0:
        return []
    elif n == 1:
        return [0]

    fib = [0, 1]
    for i in range(2, n):
        fib.append(fib[i-1] + fib[i-2])
    return fib
\`\`\`

## Agent with Skills

\`\`\`python
spec = AgentSpec(
    name="researcher",
    model="gpt-4",
    skills=["web-search", "data-analysis"],
)

agent = Agent(spec=spec)

result = agent.execute("Research latest AI trends")
\`\`\`

## Workflow Orchestration

\`\`\`python
from paracle_orchestration import Workflow, Step

workflow = Workflow(
    name="code-review",
    steps=[
        Step(
            id="analyze",
            agent="code-analyzer",
            input="Review this code: {code}",
        ),
        Step(
            id="suggest",
            agent="code-improver",
            input="Improve based on analysis: {analyze.output}",
            depends_on=["analyze"],
        ),
    ],
)

result = await workflow.execute(context={"code": source_code})
\`\`\`

Documentation Best Practices

1. Write for Your Audience

For Users:

  • Focus on "how to"
  • Provide complete examples
  • Explain common use cases
  • Include troubleshooting

For Developers:

  • Explain architecture
  • Document design decisions
  • Include code patterns
  • Link to source code

2. Start with "Why"

# Agent Inheritance

## Why Use Inheritance?

Inheritance allows you to:
- Reuse common agent configurations
- Create agent families (e.g., all coding agents)
- Override specific properties
- Maintain consistency across agents

## How It Works

...

3. Show, Don't Just Tell

# ❌ Bad: Just telling
Temperature controls randomness in agent responses.

# ✅ Good: Showing
\`\`\`yaml
# Low temperature (0.1) = deterministic
name: sql-generator
temperature: 0.1  # Consistent SQL queries

# High temperature (1.0) = creative
name: story-writer
temperature: 1.0  # Varied storytelling
\`\`\`

4. Use Progressive Disclosure

# Quick Start (Simple)

\`\`\`bash
paracle agents create my-agent
\`\`\`

# Advanced Configuration (Detailed)

<details>
<summary>Click to expand advanced options</summary>

\`\`\`yaml
name: my-agent
model: gpt-4
temperature: 0.7
max_tokens: 2000
system_prompt: |
  Custom multi-line prompt
  with detailed instructions
skills:
  - web-search
  - code-execution
\`\`\`

</details>

5. Keep It Current

  • Update docs with code changes
  • Add "Last updated" dates
  • Mark deprecated features
  • Link to changelog

Docstring Standards

Google Style (Paracle Standard)

```python def resolve_inheritance( spec: AgentSpec, registry: AgentRegistry, ) -> AgentSpec: """Resolve agent inheritance chain and merge properties.

Walks up the inheritance tree, merging properties from parent
agents. Child properties override parent properties.

Args:
    spec: The agent specification to resolve.
    registry: Registry containing all agent definitions.

Returns:
    A new AgentSpec with all inherited properties merged.

Raises:
    AgentNotFoundError: If a parent agent doesn't exist.
    CircularInheritanceError: If circular inheritance detected.

Example:
    >>> parent = AgentSpec(name="base", temperature=0.7)
    >>> child = AgentSpec(name="custom", inherits="base")
    >>> resolved = resolve_inheritance(child, registry)
    >>> resolved.temperature
    0.7
"""

```

Common Pitfalls

Don't:

  • Assume user knowledge
  • Use jargon without explanation
  • Write outdated examples
  • Skip error scenarios
  • Forget prerequisites

Do:

  • Explain concepts clearly
  • Provide working code examples
  • Update with code changes
  • Include troubleshooting
  • List prerequisites

Resources

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon