← Back to list

performance-engineering-standards
by HoangNguyen0403
A collection of Agent Skills Standard and Best Practice for Programming Languages, Frameworks that help our AI Agent follow best practies on frameworks and programming laguages
⭐ 111🍴 40📅 Jan 23, 2026
SKILL.md
name: Performance Engineering Standards description: Universal standards for high-performance software development across all frameworks. metadata: labels: [performance, optimization, scalability, profiling] triggers: keywords: [performance, optimize, profile, scalability]
Performance Engineering Standards
Universal standards for high-performance software development across all frameworks.
Priority: P1 (OPERATIONAL)
Universal standards for building high-performance software across all frameworks and languages.
🚀 Core Principles
- Efficiency by Design: Minimize resource consumption (CPU, Memory, Network) without sacrificing readability.
- Measure First: Never optimize without a baseline. Use profiling tools before and after changes.
- Scalability: Design systems to handle increased load by optimizing time and space complexity.
💾 Resource Management
- Memory Efficiency:
- Avoid memory leaks: explicit cleanup of listeners, observers, and streams.
- Optimize data structures: use the most efficient collection for the use case (e.g.,
Setfor lookups,Listfor iteration). - Lazy Initialization: Initialize expensive objects only when needed.
- CPU Optimization:
- Algorithm Complexity: Aim for $O(1)$ or $O(n)$ where possible; avoid $O(n^2)$ in critical paths.
- Offload Work: Move heavy computations to background threads or workers.
- Minimize Re-computation: Use memoization for pure, expensive functions.
🌐 Network & I/O
- Payload Reduction: Use efficient serialization (JSON minification, Protobuf) and compression.
- Batching: Group multiple small requests into single bulk operations.
- Caching Strategy:
- Implement multi-level caching (Memory -> Storage -> Network).
- Use appropriate TTL (Time To Live) and invalidation strategies.
- Non-blocking I/O: Always use asynchronous operations for file system and network access.
⚡ UI/UX Performance
- Minimize Main Thread Work: Keep animations and interactions fluid by keeping the main thread free.
- Virtualization: Use lazy loading or virtualization for long lists/large datasets.
- Tree Shaking: Ensure build tools remove unused code and dependencies.
📊 Monitoring & Testing
- Benchmarking: Write micro-benchmarks for performance-critical functions.
- SLIs/SLOs: Define Service Level Indicators (latency, throughput) and Objectives.
- Load Testing: Test system behavior under peak and stress conditions.
Score
Total Score
85/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
✓説明文
100文字以上の説明がある
+10
✓人気
GitHub Stars 100以上
+5
✓最近の活動
1ヶ月以内に更新
+10
✓フォーク
10回以上フォークされている
+5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon

