← Back to list

nestjs-performance
by HoangNguyen0403
A collection of Agent Skills Standard and Best Practice for Programming Languages, Frameworks that help our AI Agent follow best practies on frameworks and programming laguages
⭐ 111🍴 40📅 Jan 23, 2026
SKILL.md
name: NestJS Performance description: Fastify adapter, Scope management, and Compression. metadata: labels: [nestjs, performance, fastify] triggers: files: ['main.ts'] keywords: [FastifyAdapter, compression, SINGLETON, REQUEST scope]
Performance Tuning
Priority: P1 (OPERATIONAL)
High-performance patterns and optimization techniques for NestJS applications.
-
Adapter: Use
FastifyAdapterinstead of Express (2x throughput). -
Compression: Enable Gzip/Brotli compression.
// main.ts app.use(compression()); -
Keep-Alive: Configure
http.Agentkeep-alive settings to reuse TCP connections for upstream services.
Scope & Dependency Injection
- Default Scope: Adhere to
SINGLETONscope (default). - Request Scope: AVOID
REQUESTscope unless absolutely necessary.- Pro Tip: A single request-scoped service makes its entire injection chain request-scoped.
- Solution: Use Durable Providers (
durable: true) for multi-tenancy.
- Lazy Loading: Use
LazyModuleLoaderfor heavyweight modules (e.g., Admin panels).
Caching Strategy
- Application Cache: Use
@nestjs/cache-managerfor computation results.- Deep Dive: See Caching & Redis for L1/L2 strategies and Invalidation patterns.
- HTTP Cache: Set
Cache-Controlheaders for client-side caching (CDN/Browser). - Distributed: In microservices, use Redis store, not memory store.
Queues & Async Processing
- Offloading: Never block the HTTP request for long-running tasks (Emails, Reports, webhooks).
- Tool: Use
@nestjs/bull(BullMQ) or RabbitMQ (@nestjs/microservices).- Pattern: Producer (Controller) -> Queue -> Consumer (Processor).
Serialization
- Warning:
class-transformeris CPU expensive. - Optimization: For high-throughput READ endpoints, consider manual mapping or using
fast-json-stringify(built-in fastify serialization) instead of interceptors.
Database Tuning
- Projections: Always use
select: []to fetch only needed columns. - N+1: Prevent N+1 queries by using
relationscarefully orDataLoaderfor Graph/Field resolvers. - Connection Pooling: Configure pool size (e.g.,
pool: { min: 2, max: 10 }) in config to match DB limits.
Profiling & Scaling
- Offloading: Move CPU-heavy tasks (Image processing, Crypto) to
worker_threads. - Clustering: For non-containerized environments, use
ClusterModuleto utilize all CPU cores. In K8s, prefer ReplicaSets.
Score
Total Score
85/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
✓説明文
100文字以上の説明がある
+10
✓人気
GitHub Stars 100以上
+5
✓最近の活動
1ヶ月以内に更新
+10
✓フォーク
10回以上フォークされている
+5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon

