
using-perplexity-platform
by FortiumPartners
Ensemble Plugin Ecosystem - Modular Claude Code plugins for AI-augmented development workflows
SKILL.md
name: using-perplexity-platform description: Perplexity Sonar API development with search-augmented generation, real-time web search, citations, and OpenAI-compatible Chat Completions. Use for AI-powered applications requiring up-to-date information, research assistants, and grounded responses with sources.
Perplexity Sonar API Development Skill
Quick Reference
Perplexity Sonar API development with Python and TypeScript/JavaScript clients. Covers Sonar model family for search-augmented generation, Chat Completions API (OpenAI-compatible), real-time web search, citations, and streaming.
Table of Contents
- When to Use
- Sonar Model Family
- Quick Start
- Chat Completions API
- Citations and Sources
- Search Configuration
- Streaming
- Error Handling
- Best Practices
- Anti-Patterns
- Integration Checklist
- When to Use Perplexity vs Others
- CLI Quick Test
- See Also
When to Use
This skill is loaded by backend-developer when:
openaipackage inrequirements.txtorpyproject.tomlwith Perplexity base URL- Environment variables
PERPLEXITY_API_KEYorPPLX_API_KEYpresent - User mentions "Perplexity", "Sonar", or "search-augmented" in task
- Code uses
api.perplexity.aibase URL
Minimum Detection Confidence: 0.8 (80%)
Sonar Model Family
Available Models
| Model | Context | Search | Use Case | Speed |
|---|---|---|---|---|
sonar | 128K | Yes | General search-augmented | Fast |
sonar-pro | 200K | Yes | Complex research, deeper search | Medium |
sonar-reasoning | 128K | Yes | Multi-step reasoning with search | Slower |
sonar-reasoning-pro | 200K | Yes | Advanced reasoning, citations | Slowest |
Model Selection Guide
Task Complexity -> Model Selection
+-- Simple factual queries -> sonar (fast, affordable)
+-- Research with citations -> sonar-pro (deeper search)
+-- Multi-step reasoning -> sonar-reasoning
+-- Complex analysis -> sonar-reasoning-pro
Pricing (per 1M tokens)
| Model | Input | Output |
|---|---|---|
| sonar | $1.00 | $1.00 |
| sonar-pro | $3.00 | $15.00 |
| sonar-reasoning | $1.00 | $5.00 |
| sonar-reasoning-pro | $2.00 | $8.00 |
Quick Start
Python Setup (Using OpenAI SDK)
from openai import OpenAI
client = OpenAI(
api_key="pplx-...", # or use PERPLEXITY_API_KEY env var
base_url="https://api.perplexity.ai"
)
response = client.chat.completions.create(
model="sonar",
messages=[
{"role": "system", "content": "Be precise and concise. Cite sources."},
{"role": "user", "content": "What are the latest developments in AI?"}
]
)
print(response.choices[0].message.content)
# Access citations if available
if hasattr(response, 'citations'):
for citation in response.citations:
print(f" - {citation}")
TypeScript Setup
import OpenAI from 'openai';
const client = new OpenAI({
apiKey: process.env.PERPLEXITY_API_KEY,
baseURL: 'https://api.perplexity.ai'
});
const response = await client.chat.completions.create({
model: 'sonar',
messages: [
{ role: 'system', content: 'Be precise and concise. Cite sources.' },
{ role: 'user', content: 'What are the latest developments in AI?' }
]
});
console.log(response.choices[0].message.content);
Environment Configuration
export PERPLEXITY_API_KEY="pplx-..."
# Alternative: export PPLX_API_KEY="pplx-..."
Chat Completions API
Common Parameters
| Parameter | Type | Description |
|---|---|---|
model | string | Model ID (required) |
messages | array | Conversation messages (required) |
temperature | float (0-2) | Randomness (0=deterministic) |
max_tokens | int | Max response tokens |
stream | boolean | Enable streaming |
Perplexity-Specific Parameters
| Parameter | Type | Description |
|---|---|---|
search_domain_filter | array | Limit search to specific domains |
return_images | boolean | Include relevant images |
return_related_questions | boolean | Suggest follow-up questions |
search_recency_filter | string | Filter by recency (day, week, month, year) |
# Advanced search configuration
response = client.chat.completions.create(
model="sonar-pro",
messages=[{"role": "user", "content": "Recent tech layoffs?"}],
extra_body={
"search_domain_filter": ["techcrunch.com", "theverge.com"],
"search_recency_filter": "week",
"return_related_questions": True
}
)
Citations and Sources
Perplexity automatically includes citations. Extract and display them:
def get_response_with_citations(client, query, model="sonar"):
"""Get response with structured citations."""
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": query}]
)
content = response.choices[0].message.content
citations = []
if hasattr(response, 'citations'):
citations = response.citations
return content, citations
# Usage
answer, sources = get_response_with_citations(client, "Who won the latest Super Bowl?")
print("Answer:", answer)
for source in sources:
print(f" - {source}")
Search Configuration
Domain Filtering
response = client.chat.completions.create(
model="sonar-pro",
messages=[{"role": "user", "content": "Latest research on LLMs"}],
extra_body={
"search_domain_filter": ["arxiv.org", "openai.com", "anthropic.com"]
}
)
Recency Filtering
response = client.chat.completions.create(
model="sonar",
messages=[{"role": "user", "content": "Stock market news"}],
extra_body={
"search_recency_filter": "day" # day, week, month, year
}
)
Academic Focus
response = client.chat.completions.create(
model="sonar-pro",
messages=[{
"role": "system",
"content": "Focus on peer-reviewed academic sources."
}, {
"role": "user",
"content": "Research on sleep and memory consolidation?"
}],
extra_body={
"search_domain_filter": [
"pubmed.ncbi.nlm.nih.gov", "nature.com", "science.org"
]
}
)
Streaming
Synchronous Streaming
stream = client.chat.completions.create(
model="sonar",
messages=[{"role": "user", "content": "Explain machine learning."}],
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end="", flush=True)
Async Streaming
import asyncio
from openai import AsyncOpenAI
async def stream_response(prompt: str):
client = AsyncOpenAI(
api_key="pplx-...",
base_url="https://api.perplexity.ai"
)
stream = await client.chat.completions.create(
model="sonar",
messages=[{"role": "user", "content": prompt}],
stream=True
)
async for chunk in stream:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end="", flush=True)
asyncio.run(stream_response("What's happening in AI today?"))
Error Handling
from openai import (
OpenAI, RateLimitError, AuthenticationError, APIConnectionError
)
import time
def safe_search(query: str, max_retries: int = 3) -> str | None:
client = OpenAI(api_key="pplx-...", base_url="https://api.perplexity.ai")
for attempt in range(max_retries):
try:
response = client.chat.completions.create(
model="sonar",
messages=[{"role": "user", "content": query}]
)
return response.choices[0].message.content
except AuthenticationError:
raise # Don't retry auth errors
except RateLimitError:
if attempt == max_retries - 1:
raise
wait_time = (2 ** attempt) + 1
time.sleep(wait_time)
except APIConnectionError:
if attempt == max_retries - 1:
raise
time.sleep(1)
return None
Best Practices
1. Model Selection for Task
def get_model_for_task(task_type: str) -> str:
models = {
"quick_lookup": "sonar",
"research": "sonar-pro",
"analysis": "sonar-reasoning",
"complex": "sonar-reasoning-pro"
}
return models.get(task_type, "sonar")
2. Optimize for Search Quality
# BAD: vague query
messages = [{"role": "user", "content": "AI"}]
# GOOD: specific query with context
messages = [
{"role": "system", "content": "You are a tech industry analyst."},
{"role": "user", "content": "Top 3 AI startups that raised funding in 2024?"}
]
3. Use Recency Filters Appropriately
# Current events - use day/week filter
extra_body = {"search_recency_filter": "day"}
# General research - no filter needed
extra_body = {}
Anti-Patterns
| Anti-Pattern | Problem | Solution |
|---|---|---|
| Using Perplexity for creative writing | Paying for unused search | Use OpenAI/Anthropic instead |
| Ignoring citations | Losing valuable source info | Always capture and display citations |
| Overly broad queries | Irrelevant search results | Be specific, add system context |
| Hardcoding API keys | Security risk | Use environment variables |
Integration Checklist
Pre-Flight
-
PERPLEXITY_API_KEYenvironment variable set - Error handling with retry logic implemented
- Appropriate model selected for task
- Citation handling implemented
Production Readiness
- Secrets in secret manager
- Monitoring for API errors
- Usage tracking and cost alerts
- Fallback behavior for API failures
When to Use Perplexity vs Others
| Use Case | Provider |
|---|---|
| Real-time information | Perplexity |
| Research with citations | Perplexity (Sonar Pro) |
| Current events | Perplexity |
| General chat/completion | OpenAI or Anthropic |
| Code generation | OpenAI or Anthropic |
| Creative writing | OpenAI or Anthropic |
CLI Quick Test
# Test API access
curl -X POST https://api.perplexity.ai/chat/completions \
-H "Authorization: Bearer $PERPLEXITY_API_KEY" \
-H "Content-Type: application/json" \
-d '{"model": "sonar", "messages": [{"role": "user", "content": "Hello"}]}'
See Also
- REFERENCE.md - Comprehensive API documentation with advanced patterns
- Multi-turn conversation management
- Enterprise data integrations
- Context7 integration patterns
- Server-Sent Events for web applications
- Production-ready code patterns
- templates/ - Production-ready code templates
- examples/ - Working examples
- Perplexity API Docs
Progressive Disclosure: Start here for quick reference. Load REFERENCE.md for advanced patterns and comprehensive documentation.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon


