Back to list
FlorianBruniaux

voice-refine

by FlorianBruniaux

Claude Code (Anthropic): the learning curve, solved. ~10k-line guide + ~100 templates + 150+ quiz questions + 15+ security hooks. Beginner → Power User.

51🍴 1📅 Jan 24, 2026

SKILL.md


name: voice-refine description: Transform verbose voice input into optimized Claude prompts allowed-tools: Read context: inherit agent: specialist

Voice Refine Skill

Transform verbose, stream-of-consciousness voice dictation into structured, token-efficient prompts for Claude Code.

When to Use

  • Input from voice dictation (Wispr Flow, Superwhisper, macOS Dictation)
  • Verbose text >150 words
  • Contains filler words, repetitions, or tangents
  • Natural speech patterns that need structure

Transformation Pipeline

1. DEDUPE    → Remove repetitions and filler words
2. EXTRACT   → Identify core requirements and constraints
3. STRUCTURE → Organize into standard sections
4. COMPRESS  → Reduce to ~30% of original while preserving intent

Output Format

## Contexte
[Project context, existing stack, relevant files]

## Objectif
[Single sentence: what needs to be built/changed]

## Contraintes
- [Constraint 1]
- [Constraint 2]
- [etc.]

## Output attendu
[Expected deliverables: files, format, tests]

Flags

FlagEffect
--confirmShow refined prompt before sending to Claude (default)
--directSend refined prompt directly without confirmation
--verboseKeep more detail, less compression
--enOutput in English (default: matches input language)

Usage Examples

Basic Usage

/voice-refine

Alors euh j'aimerais que tu m'aides à faire un truc, en fait j'ai une API
qui renvoie des données utilisateurs et je voudrais les afficher dans un
tableau React, mais attention il faut que ça soit paginé parce que y'a
beaucoup de données, genre des milliers d'utilisateurs, et aussi faudrait
pouvoir trier par nom ou par date d'inscription, ah et on utilise Tailwind
dans le projet donc faut que ça matche avec ça...

With Flags

/voice-refine --direct --en

[voice input in any language → sends English prompt directly]

Compression Metrics

MetricTarget
Token reduction60-70%
Information retention>95%
Structure clarityHigh

Integration with Voice Tools

Wispr Flow

  1. Dictate with Cmd+Shift+Space
  2. Paste into Claude Code
  3. Run /voice-refine

Superwhisper

  1. Record with hotkey
  2. Text appears in active window
  3. Run /voice-refine to structure

macOS Dictation

  1. Fn Fn to start
  2. Speak naturally
  3. Run /voice-refine to clean up

What Gets Removed

  • Filler words: "euh", "um", "like", "you know", "basically"
  • Repetitions: same concept stated multiple ways
  • Tangents: off-topic thoughts
  • Hedging: "maybe", "I think", "probably" (unless relevant)
  • Politeness padding: "please", "could you", "I'd like"

What Gets Preserved

  • Technical requirements
  • Constraints and limitations
  • Context about existing code
  • Expected output format
  • Edge cases mentioned
  • Business logic rules

See Also

  • guide/ai-ecosystem.md - Voice-to-Text Tools section
  • examples/before-after.md - Full transformation examples

Score

Total Score

75/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon