← Back to list

voice-refine
by FlorianBruniaux
Claude Code (Anthropic): the learning curve, solved. ~10k-line guide + ~100 templates + 150+ quiz questions + 15+ security hooks. Beginner → Power User.
⭐ 51🍴 1📅 Jan 24, 2026
SKILL.md
name: voice-refine description: Transform verbose voice input into optimized Claude prompts allowed-tools: Read context: inherit agent: specialist
Voice Refine Skill
Transform verbose, stream-of-consciousness voice dictation into structured, token-efficient prompts for Claude Code.
When to Use
- Input from voice dictation (Wispr Flow, Superwhisper, macOS Dictation)
- Verbose text >150 words
- Contains filler words, repetitions, or tangents
- Natural speech patterns that need structure
Transformation Pipeline
1. DEDUPE → Remove repetitions and filler words
2. EXTRACT → Identify core requirements and constraints
3. STRUCTURE → Organize into standard sections
4. COMPRESS → Reduce to ~30% of original while preserving intent
Output Format
## Contexte
[Project context, existing stack, relevant files]
## Objectif
[Single sentence: what needs to be built/changed]
## Contraintes
- [Constraint 1]
- [Constraint 2]
- [etc.]
## Output attendu
[Expected deliverables: files, format, tests]
Flags
| Flag | Effect |
|---|---|
--confirm | Show refined prompt before sending to Claude (default) |
--direct | Send refined prompt directly without confirmation |
--verbose | Keep more detail, less compression |
--en | Output in English (default: matches input language) |
Usage Examples
Basic Usage
/voice-refine
Alors euh j'aimerais que tu m'aides à faire un truc, en fait j'ai une API
qui renvoie des données utilisateurs et je voudrais les afficher dans un
tableau React, mais attention il faut que ça soit paginé parce que y'a
beaucoup de données, genre des milliers d'utilisateurs, et aussi faudrait
pouvoir trier par nom ou par date d'inscription, ah et on utilise Tailwind
dans le projet donc faut que ça matche avec ça...
With Flags
/voice-refine --direct --en
[voice input in any language → sends English prompt directly]
Compression Metrics
| Metric | Target |
|---|---|
| Token reduction | 60-70% |
| Information retention | >95% |
| Structure clarity | High |
Integration with Voice Tools
Wispr Flow
- Dictate with
Cmd+Shift+Space - Paste into Claude Code
- Run
/voice-refine
Superwhisper
- Record with hotkey
- Text appears in active window
- Run
/voice-refineto structure
macOS Dictation
Fn Fnto start- Speak naturally
- Run
/voice-refineto clean up
What Gets Removed
- Filler words: "euh", "um", "like", "you know", "basically"
- Repetitions: same concept stated multiple ways
- Tangents: off-topic thoughts
- Hedging: "maybe", "I think", "probably" (unless relevant)
- Politeness padding: "please", "could you", "I'd like"
What Gets Preserved
- Technical requirements
- Constraints and limitations
- Context about existing code
- Expected output format
- Edge cases mentioned
- Business logic rules
See Also
guide/ai-ecosystem.md- Voice-to-Text Tools sectionexamples/before-after.md- Full transformation examples
Score
Total Score
75/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
✓説明文
100文字以上の説明がある
+10
○人気
GitHub Stars 100以上
0/15
✓最近の活動
1ヶ月以内に更新
+10
○フォーク
10回以上フォークされている
0/5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon


