Back to list
5dlabs

project-development

by 5dlabs

Cognitive Task Orchestrator - GitOps on Bare Metal or Cloud for AI Agents

2🍴 1📅 Jan 25, 2026

SKILL.md


name: project-development description: Methodology for identifying LLM-suited tasks, designing pipelines, and iterating with agent-assisted development. agents: [morgan, bolt, atlas] triggers: [start LLM project, design batch pipeline, task-model fit, pipeline architecture, cost estimation]

Project Development Methodology

Principles for identifying tasks suited to LLM processing, designing effective architectures, and iterating rapidly using agent-assisted development.

Task-Model Fit Recognition

LLM-Suited Tasks

CharacteristicWhy It Fits
Synthesis across sourcesLLMs excel at combining information
Subjective judgment with rubricsGrading, evaluation, classification
Natural language outputHuman-readable text goals
Error toleranceIndividual failures don't break system
Batch processingNo conversational state needed
Domain knowledge in trainingModel has relevant context

LLM-Unsuited Tasks

CharacteristicWhy It Fails
Precise computationMath, counting unreliable
Real-time requirementsLatency too high
Perfect accuracy requirementsHallucination risk
Proprietary data dependenceModel lacks context
Sequential dependenciesHeavy step-by-step coupling
Deterministic output requirementsSame input ≠ identical output

Manual Prototype Step

Before automation, validate with manual test:

  1. Copy one representative input into model interface
  2. Evaluate output quality
  3. This takes minutes, prevents hours of waste

Answers critical questions:

  • Does model have required knowledge?
  • Can it produce needed format?
  • What quality level to expect at scale?
  • What failure modes exist?

Pipeline Architecture

Canonical structure:

acquire → prepare → process → parse → render
  1. Acquire: Fetch raw data (APIs, files, databases)
  2. Prepare: Transform to prompt format
  3. Process: Execute LLM calls (expensive, non-deterministic)
  4. Parse: Extract structured data from outputs
  5. Render: Generate final outputs

Stages 1, 2, 4, 5 are deterministic. Stage 3 is expensive.

File System as State Machine

Each processing unit gets a directory:

data/{id}/
├── raw.json      # acquire complete
├── prompt.md     # prepare complete
├── response.md   # process complete
├── parsed.json   # parse complete

Benefits:

  • Natural idempotency (file existence gates execution)
  • Easy debugging (human-readable state)
  • Simple parallelization (directories independent)
  • Trivial caching (files persist)

Structured Output Design

Effective structure includes:

  1. Section markers for parsing
  2. Format examples showing exact output
  3. Rationale: "I will be parsing this programmatically"
  4. Constrained values (enums, ranges, formats)

Build robust parsers:

  • Use flexible regex patterns
  • Provide sensible defaults for missing sections
  • Log failures instead of crashing

Cost Estimation

Total cost = (items × tokens_per_item × price_per_token) + overhead

For batch processing:

  • Estimate input tokens (prompt + context)
  • Estimate output tokens (typical response)
  • Multiply by item count
  • Add 20-30% buffer for retries

Single vs Multi-Agent

Single-agent works for:

  • Batch processing with independent items
  • Non-interacting items
  • Simpler cost management

Multi-agent works for:

  • Parallel exploration
  • Tasks exceeding single context window
  • Specialized sub-agents improving quality

Primary reason: context isolation, not role anthropomorphization.

Architectural Reduction

Start minimal. Add complexity only when proven necessary.

Vercel d0 case:

  • Before: 17 specialized tools, 80% success, 274s execution
  • After: 2 tools (bash + SQL), 100% success, 77s execution

When reduction wins:

  • Well-documented data layer
  • Sufficient model reasoning capability
  • Specialized tools constraining rather than enabling

Guidelines

  1. Validate task-model fit with manual prototyping first
  2. Structure pipelines as discrete, idempotent, cacheable stages
  3. Use file system for state management
  4. Design prompts for structured, parseable outputs
  5. Start minimal; add complexity only when proven necessary
  6. Estimate costs early and track throughout
  7. Build robust parsers handling LLM output variations
  8. Expect and plan for multiple architectural iterations

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon