
parallel-agents
by 5dlabs
Cognitive Task Orchestrator - GitOps on Bare Metal or Cloud for AI Agents
SKILL.md
name: parallel-agents description: Dispatch one agent per independent problem domain for concurrent investigation and implementation.
Dispatching Parallel Agents
Overview
When you have multiple unrelated failures (different test files, different subsystems, different bugs), investigating them sequentially wastes time. Each investigation is independent and can happen in parallel.
Core principle: Dispatch one agent per independent problem domain. Let them work concurrently.
When to Use
Use when:
- 3+ test files failing with different root causes
- Multiple subsystems broken independently
- Each problem can be understood without context from others
- No shared state between investigations
Don't use when:
- Failures are related (fix one might fix others)
- Need to understand full system state
- Agents would interfere with each other
Decision Flow
Multiple failures?
↓ yes
Are they independent?
↓ yes → no (related): Single agent investigates all
Can they work in parallel?
↓ yes → no (shared state): Sequential agents
Parallel dispatch!
The Pattern
1. Identify Independent Domains
Group failures by what's broken:
- File A tests: Tool approval flow
- File B tests: Batch completion behavior
- File C tests: Abort functionality
Each domain is independent - fixing tool approval doesn't affect abort tests.
2. Create Focused Agent Tasks
Each agent gets:
- Specific scope: One test file or subsystem
- Clear goal: Make these tests pass
- Constraints: Don't change other code
- Expected output: Summary of what you found and fixed
3. Dispatch in Parallel
// In Claude Code / AI environment
Task("Fix agent-tool-abort.test.ts failures")
Task("Fix batch-completion-behavior.test.ts failures")
Task("Fix tool-approval-race-conditions.test.ts failures")
// All three run concurrently
4. Review and Integrate
When agents return:
- Read each summary
- Verify fixes don't conflict
- Run full test suite
- Integrate all changes
Agent Prompt Structure
Good agent prompts are:
- Focused - One clear problem domain
- Self-contained - All context needed to understand the problem
- Specific about output - What should the agent return?
Example Prompt
Fix the 3 failing tests in src/agents/agent-tool-abort.test.ts:
1. "should abort tool with partial output capture" - expects 'interrupted at' in message
2. "should handle mixed completed and aborted tools" - fast tool aborted instead of completed
3. "should properly track pendingToolCount" - expects 3 results but gets 0
These are timing/race condition issues. Your task:
1. Read the test file and understand what each test verifies
2. Identify root cause - timing issues or actual bugs?
3. Fix by:
- Replacing arbitrary timeouts with event-based waiting
- Fixing bugs in abort implementation if found
- Adjusting test expectations if testing changed behavior
Do NOT just increase timeouts - find the real issue.
Return: Summary of what you found and what you fixed.
Common Mistakes
Too broad:
- ❌ "Fix all the tests" - agent gets lost
- ✅ "Fix agent-tool-abort.test.ts" - focused scope
No context:
- ❌ "Fix the race condition" - agent doesn't know where
- ✅ Context: Paste the error messages and test names
No constraints:
- ❌ Agent might refactor everything
- ✅ "Do NOT change production code" or "Fix tests only"
Vague output:
- ❌ "Fix it" - you don't know what changed
- ✅ "Return summary of root cause and changes"
When NOT to Use
Related failures: Fixing one might fix others - investigate together first
Need full context: Understanding requires seeing entire system
Exploratory debugging: You don't know what's broken yet
Shared state: Agents would interfere (editing same files, using same resources)
Verification
After agents return:
- Review each summary - Understand what changed
- Check for conflicts - Did agents edit same code?
- Run full suite - Verify all fixes work together
- Spot check - Agents can make systematic errors
Real Example
Scenario: 6 test failures across 3 files after major refactoring
Failures:
- agent-tool-abort.test.ts: 3 failures (timing issues)
- batch-completion-behavior.test.ts: 2 failures (tools not executing)
- tool-approval-race-conditions.test.ts: 1 failure (execution count = 0)
Decision: Independent domains - abort logic separate from batch completion separate from race conditions
Dispatch:
Agent 1 → Fix agent-tool-abort.test.ts
Agent 2 → Fix batch-completion-behavior.test.ts
Agent 3 → Fix tool-approval-race-conditions.test.ts
Results:
- Agent 1: Replaced timeouts with event-based waiting
- Agent 2: Fixed event structure bug (threadId in wrong place)
- Agent 3: Added wait for async tool execution to complete
Integration: All fixes independent, no conflicts, full suite green
Time saved: 3 problems solved in parallel vs sequentially
Key Benefits
- Parallelization - Multiple investigations happen simultaneously
- Focus - Each agent has narrow scope, less context to track
- Independence - Agents don't interfere with each other
- Speed - 3 problems solved in time of 1
Attribution
Based on obra/superpowers dispatching-parallel-agents skill.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon


