Back to list
5dlabs

observability

by 5dlabs

Cognitive Task Orchestrator - GitOps on Bare Metal or Cloud for AI Agents

2🍴 1📅 Jan 25, 2026

SKILL.md


name: observability description: Query Prometheus metrics, Loki logs, and Grafana dashboards for diagnostics and incident response. agents: [rex, grizz, nova, blaze, bolt, cipher, cleo, tess] triggers: [metrics, logs, prometheus, loki, grafana, monitoring, alerts, incident]

Observability Tools

Query metrics, logs, and dashboards for diagnostics and incident response.

Prometheus (Metrics)

Query metrics for performance analysis and alerting.

# CPU usage by pod
prometheus_query({
  query: 'rate(container_cpu_usage_seconds_total{namespace="my-service"}[5m])'
})

# Memory usage
prometheus_query({
  query: 'container_memory_usage_bytes{namespace="my-service"}'
})

# HTTP request rate
prometheus_query({
  query: 'rate(http_requests_total{namespace="my-service"}[5m])'
})

# Error rate
prometheus_query({
  query: 'rate(http_requests_total{status=~"5.."}[5m]) / rate(http_requests_total[5m])'
})

Loki (Logs)

Query logs for debugging and incident investigation.

# Application logs
loki_query({
  query: '{namespace="my-service", app="api"} |= "error"',
  limit: 100
})

# Structured log parsing
loki_query({
  query: '{namespace="my-service"} | json | level="error"'
})

# Time-based filtering
loki_query({
  query: '{namespace="my-service"}',
  start: "2024-01-01T00:00:00Z",
  end: "2024-01-01T01:00:00Z"
})

Common Queries

ScenarioQuery TypeExample
High latencyPrometheushistogram_quantile(0.99, rate(http_request_duration_seconds_bucket[5m]))
Errors spikeLoki{app="api"} |= "error" | json | count by (error_type)
Memory leakPrometheuscontainer_memory_usage_bytes{pod=~"api.*"}
Failed requestsLoki{app="api"} | json | status >= 500

Incident Response Flow

  1. Check alerts - What triggered?
  2. Query metrics - Is it resource exhaustion?
  3. Query logs - What errors are occurring?
  4. Correlate - Match timestamps across metrics and logs
  5. Identify root cause - Database? Network? Code bug?

Best Practices

  1. Start broad, then narrow - Filter down to specific pods
  2. Use time ranges - Don't query unbounded
  3. Correlate metrics + logs - Same time window
  4. Check dashboard first - Grafana may have pre-built views

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon