Back to list
5dlabs

deep-research

by 5dlabs

Cognitive Task Orchestrator - GitOps on Bare Metal or Cloud for AI Agents

2🍴 1📅 Jan 24, 2026

SKILL.md


name: deep-research description: Deep technical research using Firecrawl Agent for autonomous web investigation, competitive analysis, and implementation pattern discovery. agents: [morgan, cleo, rex, nova, blaze, grizz] triggers: [research, competitive, examples, how do others, best practices, like X, similar to, compare, industry standard] globs:

  • "**/prd*.md"
  • "**/prd*.txt"
  • "/intake/"
  • "/docs/"

Deep Research Skill

Perform comprehensive technical research using the Firecrawl Agent API for autonomous web investigation. Use this skill when tasks require understanding external patterns, competitive analysis, or finding implementation examples.

When to Trigger Deep Research

Scan for these patterns in PRDs and task requirements:

PatternExampleResearch Action
"like X" references"authentication like Auth0"Research how Auth0 implements it
"similar to" comparisons"similar to Stripe webhooks"Study Stripe's webhook patterns
Competitive mentions"compete with Notion"Analyze Notion's architecture
Best practices requests"follow industry standards"Survey how leaders solve it
Unfamiliar tech"use CRDT for sync"Find CRDT implementation examples
"how do others" questions"how do others handle this?"Multi-source investigation

Research Protocol

Step 1: Identify Research Needs

Before generating tasks, scan the PRD for:

  1. External references - Named products, services, or standards
  2. Comparative requirements - "better than", "like", "similar to"
  3. Technical unknowns - Unfamiliar patterns or technologies
  4. Best practice requests - "industry standard", "production-ready"

Step 2: Choose the Right Tool

Research TypeToolWhy
Competitive analysisfirecrawl_agentMulti-site autonomous research
Implementation patternsoctocode_githubSearchCodeSearches actual production code across GitHub
Library documentationcontext7Official, structured docs
Code examples from GitHuboctocode_githubSearchCodeReal production code with semantic search
How major projects solve Xoctocode_githubSearchRepositoriesFind reference implementations
PR discussions/fixesoctocode_githubSearchPullRequestsLearn how issues were resolved
Specific page contentfirecrawl_scrapeKnown URL, faster

Step 3: Execute Research

Using Firecrawl Agent

firecrawl_agent({
  prompt: "YOUR RESEARCH QUESTION - be specific",
  schema: {
    "type": "object",
    "properties": {
      "findings": {
        "type": "array",
        "items": {
          "type": "object",
          "properties": {
            "source": { "type": "string" },
            "approach": { "type": "string" },
            "details": { "type": "string" },
            "tradeoffs": { "type": "string" }
          }
        }
      },
      "recommendation": { "type": "string" }
    }
  }
})

Step 4: Structure Output

Always format research findings as:

## Research: [Topic]

### Summary
[2-3 sentence key takeaway]

### Findings

| Source | Approach | Key Details |
|--------|----------|-------------|
| Auth0 | JWT + refresh rotation | 15min access, 7d refresh |
| Clerk | Session tokens | Server-side validation |

### Recommendation
[How this applies to the current task]

### Sources
- [URL 1] - Description
- [URL 2] - Description

Common Research Patterns

Competitive Analysis

When PRD mentions competitors or "like X":

firecrawl_agent({
  prompt: "Compare how [Competitor A], [Competitor B], and [Competitor C] implement [feature]. Focus on [specific aspects from PRD].",
  schema: {
    "type": "object",
    "properties": {
      "providers": {
        "type": "array",
        "items": {
          "type": "object",
          "properties": {
            "name": { "type": "string" },
            "approach": { "type": "string" },
            "strengths": { "type": "string" },
            "weaknesses": { "type": "string" }
          }
        }
      },
      "recommendation": { "type": "string" }
    }
  }
})

Implementation Patterns

When PRD requires unfamiliar technology:

firecrawl_agent({
  prompt: "Find production examples of [technology] being used for [use case]. Include code patterns, gotchas, and performance considerations.",
  schema: {
    "type": "object",
    "properties": {
      "examples": {
        "type": "array",
        "items": {
          "type": "object",
          "properties": {
            "source": { "type": "string" },
            "pattern": { "type": "string" },
            "code_example": { "type": "string" },
            "gotchas": { "type": "string" }
          }
        }
      }
    }
  }
})

Architecture Research

When designing new systems:

firecrawl_agent({
  prompt: "What architectures do major [domain] platforms use for [requirement]? Compare approaches from [Company A], [Company B], etc.",
  schema: {
    "type": "object",
    "properties": {
      "architectures": {
        "type": "array",
        "items": {
          "type": "object",
          "properties": {
            "company": { "type": "string" },
            "architecture": { "type": "string" },
            "scale": { "type": "string" },
            "tradeoffs": { "type": "string" }
          }
        }
      }
    }
  }
})

Best Practices

When PRD requests "industry standard" approaches:

firecrawl_agent({
  prompt: "What are current best practices for [topic] in [year]? Focus on [specific requirements]. Include examples from production systems."
})

Integrating Research into Tasks

Research findings should be embedded in task details fields:

{
  "id": "5",
  "title": "Nova: Implement Refresh Token Rotation",
  "agentHint": "nova",
  "details": "## Requirements\nImplement refresh token rotation for session management.\n\n## Research Findings\nBased on competitive analysis:\n- Auth0: 15min access tokens, 7-day refresh tokens with rotation\n- Clerk: Session-based with server validation\n- Supabase: JWT with configurable expiry\n\n## Recommended Approach\nFollow Auth0 pattern with:\n- 15-minute access token lifetime\n- 7-day refresh token with single-use rotation\n- Revocation on suspicious activity\n\n## Code Signatures\n```typescript\nexport const refreshToken = Effect.gen(function* () {\n  // Implementation based on research\n})\n```"
}

Cost Management

Firecrawl Agent pricing is dynamic. Optimize costs:

  1. Be specific - Vague prompts cost more
  2. Use schemas - Structured output reduces processing
  3. Provide URLs when known - Narrows search scope
  4. Batch related questions - One comprehensive query vs multiple small ones

When NOT to Use Deep Research

  • Library docs exist in Context7 - Use context7 instead
  • You know the exact URL - Use firecrawl_scrape
  • Simple factual lookup - Use firecrawl_search
  • Code examples from GitHub repos - Use octocode_githubSearchCode (semantic search across repos)
  • How React/major OSS projects do X - Use OctoCode to search their source

OctoCode Integration

For implementation pattern research, combine Firecrawl (web) with OctoCode (code):

# 1. Research how competitors approach the problem (web)
firecrawl_agent({ prompt: "How does Auth0 implement refresh token rotation?" })

# 2. Find actual implementations in open source (code)
octocode_githubSearchCode({
  query: "refresh token rotation",
  language: "typescript",
  stars: ">500"
})

# 3. Get library docs for the chosen approach
context7_get_library_docs({ libraryId: "/better-auth/better-auth", topic: "refresh tokens" })

Research Checklist

Before finalizing research-informed tasks:

  • All "like X" and "similar to" references researched
  • Competitive mentions analyzed
  • Unfamiliar technologies investigated
  • Research findings embedded in relevant task details
  • Sources cited for verification
  • Recommendations align with PRD requirements

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon