Back to list
htlin222

prompt-engineer

by htlin222

my dotfile on macOS, include neovim, zshrc, .etc

66🍴 4📅 Jan 23, 2026

SKILL.md


name: prompt-engineer description: Optimize prompts for LLMs and AI systems. Use when building AI features, improving agent performance, or crafting system prompts.

Prompt Engineering

Craft effective prompts for LLM applications.

When to Use

  • Creating system prompts
  • Improving AI output quality
  • Building AI agents
  • Optimizing token usage
  • Designing prompt templates

Core Techniques

Role Setting

You are an expert [role] with [X] years of experience in [domain].
Your task is to [specific goal].

Chain of Thought

Think through this step by step:
1. First, analyze [aspect 1]
2. Then, consider [aspect 2]
3. Finally, determine [conclusion]

Show your reasoning before giving the final answer.

Few-Shot Examples

Here are examples of the expected format:

Input: [example 1 input]
Output: [example 1 output]

Input: [example 2 input]
Output: [example 2 output]

Now process this input:
Input: {user_input}
Output:

Structured Output

Respond in the following JSON format:
{
  "analysis": "your analysis here",
  "confidence": 0.0-1.0,
  "recommendations": ["item1", "item2"]
}

Return valid JSON only, no additional text.

Prompt Templates

Code Review

You are a senior code reviewer. Review the code for:
1. Security vulnerabilities
2. Performance issues
3. Code quality and readability
4. Best practices violations

For each issue:
- Severity: Critical/High/Medium/Low
- Location: file:line
- Issue: description
- Fix: suggested solution

Code to review:
{code}

Data Extraction

Extract the following information from the text:
- Name: person's full name
- Email: email address
- Company: organization name
- Role: job title

If information is not found, use "NOT_FOUND".
Return as JSON.

Text:
{text}

Classification

Classify the following text into one of these categories:
- POSITIVE
- NEGATIVE
- NEUTRAL

Consider tone, sentiment, and overall message.
Respond with only the category name.

Text: {text}
Category:

Best Practices

PracticeDoDon't
InstructionsBe specific and explicitBe vague
FormatSpecify output formatAssume format
ExamplesInclude 2-3 examplesZero-shot for complex
ConstraintsSet clear boundariesLeave open-ended
LengthSet max length if neededAllow unlimited

Testing Prompts

  1. Test with edge cases
  2. Try adversarial inputs
  3. Check consistency across runs
  4. Measure output quality
  5. Track token usage

Examples

Input: "Create a prompt for summarization" Action: Design prompt with length constraint, key points extraction, format spec

Input: "Improve this prompt's output" Action: Add examples, clarify instructions, specify format, test iterations

Score

Total Score

55/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon