Back to list
WILLOSCAR

dedupe-rank

by WILLOSCAR

Research pipelines as semantic execution units: each skill declares inputs/outputs, acceptance criteria, and guardrails. Evidence-first methodology prevents hollow writing through structured intermediate artifacts.

83🍴 10📅 Jan 24, 2026

SKILL.md


name: dedupe-rank description: | Dedupe and rank a raw paper set (papers/papers_raw.jsonl) to produce papers/papers_dedup.jsonl and papers/core_set.csv. Trigger: dedupe, rank, core set, 去重, 排序, 精选论文, 核心集合. Use when: 检索后需要把广覆盖集合收敛成可管理的 core set(用于 taxonomy/outline/mapping)。 Skip if: 已经有人手工整理了稳定的 papers/core_set.csv(无需再次 churn)。 Network: none. Guardrail: 偏 deterministic;输出应可重复(稳定 paper_id、字段规范)。

Dedupe + Rank

Turn a broad retrieved set into a smaller core set for taxonomy/outline building.

This is a deterministic “curation” step: it should be stable and repeatable.

Input

  • papers/papers_raw.jsonl

Outputs

  • papers/papers_dedup.jsonl
  • papers/core_set.csv

Workflow (high level)

  1. Dedupe by normalized (title, year) and keep the richest metadata per duplicate cluster.
  2. Rank by relevance/recency signals (and optionally pin known classics for certain topics). For LLM-agent topics, also ensure a small quota of prior surveys/reviews is present to support a paper-like Related Work section.
  3. Write papers/core_set.csv with stable paper_id values and useful metadata columns (arxiv_id, pdf_url, categories).

Quality checklist

  • papers/papers_dedup.jsonl exists and is valid JSONL.
  • papers/core_set.csv exists and has a header row.

Script

Quick Start

  • python .codex/skills/dedupe-rank/scripts/run.py --help
  • python .codex/skills/dedupe-rank/scripts/run.py --workspace <workspace_dir> --core-size 50

All Options

  • --core-size <n>: target size for papers/core_set.csv
  • queries.md also supports core_size / core_set_size / dedupe_core_size (overrides default when present)

Examples

  • Smaller core set for fast iteration:
    • python .codex/skills/dedupe-rank/scripts/run.py --workspace <ws> --core-size 25

Notes

  • This step may annotate papers/core_set.csv:reason with tags such as pinned_classic and prior_survey (deterministic, topic-aware guards for survey writing).
  • Systematic-review default: if the active pipeline is systematic-review and core_size is not specified, the script keeps the full deduped pool in papers/core_set.csv (so screening does not silently drop candidates).
  • This step is deterministic; reruns should be stable for the same inputs.

Troubleshooting

Common Issues

Issue: papers/core_set.csv is too small / empty

Symptom:

  • Core set has very few rows.

Causes:

  • Input papers/papers_raw.jsonl is small, or many rows are missing required fields.

Solutions:

  • Broaden retrieval (or provide a richer offline export) and rerun.
  • Lower --core-size only if you intentionally want a small core set.

Issue: Duplicates still appear after dedupe

Symptom:

  • Near-identical titles remain.

Causes:

  • Title normalization is defeated by noisy exports.

Solutions:

  • Clean title fields in the export (strip prefixes/suffixes, fix encoding) and rerun.

Recovery Checklist

  • papers/papers_raw.jsonl lines contain title/year/url.
  • papers/core_set.csv has stable paper_id values.

Score

Total Score

70/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon