Back to list
xuzeyu91

ms-agent-framework-rag

by xuzeyu91

WebCode is a browser-based AI coding platform that lets you remotely run CLI assistants like Claude Code and Codex. Code anywhere with just a web browser. We’re also adding an office-assistant mode for planning, research/summaries, meeting notes, and drafting docs/emails—connected to your project context.

282🍴 25📅 Jan 23, 2026

SKILL.md


name: ms-agent-framework-rag description: Comprehensive guide for building Agentic RAG systems using Microsoft Agent Framework in C#. Use when creating RAG applications with semantic search, document indexing, and intelligent agent orchestration. Includes scaffolding scripts, reference implementations, and documentation for vector databases, embedding models, and multi-agent workflows.

Microsoft Agent Framework - Agentic RAG System

This skill provides scaffolding and guidance for building production-ready Agentic RAG (Retrieval-Augmented Generation) systems using Microsoft Agent Framework with C#.

Quick Start

Use the scaffolding script to create a new RAG system:

scripts/create_rag_system.sh <project-name> [--output-dir <path>]

Example:

scripts/create_rag_system.sh MyKnowledgeBase --output-dir ./my-rag-project

Architecture Overview

An Agentic RAG system consists of:

  1. Ingestion Layer: Document parsing, chunking, and embedding generation
  2. Vector Store: Semantic search index (Azure AI Search, Qdrant, or Pinecone)
  3. Agent Framework: Multi-agent orchestration with Microsoft AutoGen
  4. LLM Integration: Azure OpenAI or OpenAI API for generation
  5. API Layer: RESTful endpoints for querying

Core Components

  • Use Azure AI Search for integrated vector + keyword search
  • Store embeddings with metadata (source, timestamp, tags)
  • Implement hybrid search (vector + BM25) for best results

See references/semantic_search.md for implementation details.

2. Multi-Agent System

Build specialized agents:

  • Research Agent: Finds relevant documents
  • Synthesis Agent: Combines information from multiple sources
  • Validation Agent: Checks accuracy and citations

See references/agent_patterns.md for agent design patterns.

3. Document Processing

  • Supported formats: PDF, DOCX, TXT, MD, HTML
  • Chunking strategies: semantic, sliding window, hierarchical
  • Metadata extraction: title, author, date, tags

See references/document_processing.md for chunking strategies.

Available Scripts

create_rag_system.sh

Scaffolds a complete RAG system with:

  • Project structure following best practices
  • Configuration files (appsettings.json)
  • Docker compose for local development
  • Example agents and tools

Usage:

scripts/create_rag_system.sh <project-name> [--output-dir <path>]

ingest_documents.sh

Batch document ingestion:

scripts/ingest_documents.sh <source-dir> <index-name>

run_local.sh

Start the RAG system locally:

scripts/run_local.sh <project-dir>

Configuration

Required environment variables:

AZURE_OPENAI_ENDPOINT=<your-endpoint>
AZURE_OPENAI_API_KEY=<your-key>
AZURE_SEARCH_ENDPOINT=<your-search-endpoint>
AZURE_SEARCH_KEY=<your-search-key>
EMBEDDING_MODEL=text-embedding-ada-002
CHAT_MODEL=gpt-4

Reference Documentation

  • references/semantic_search.md - Vector search implementation
  • references/agent_patterns.md - Multi-agent design patterns
  • references/document_processing.md - Chunking and preprocessing
  • references/evaluation.md - RAG quality metrics

Best Practices

  1. Start Simple: Begin with basic RAG, add agents incrementally
  2. Metadata Matters: Rich metadata improves retrieval accuracy
  3. Hybrid Search: Combine vector and keyword search
  4. Citation Tracking: Always include source references
  5. Evaluation: Use RAGAS framework for quality metrics

Common Patterns

Multi-Step Retrieval

For complex queries, use iterative refinement:

  1. Initial search with broad query
  2. Research agent expands with sub-queries
  3. Synthesis agent combines results
  4. Validation agent checks citations

Citation Management

Always track:

  • Document ID
  • Page number
  • Chunk index
  • Relevance score

See references/citations.md for implementation.

Troubleshooting

Poor Retrieval Quality

  • Adjust chunk size (try 512-1024 tokens)
  • Use hybrid search instead of pure vector
  • Add more metadata for filtering
  • Consider re-embedding with different model

Slow Performance

  • Enable caching on vector queries
  • Use streaming responses
  • Implement async document ingestion
  • Consider partitioning large indices

High Costs

  • Use smaller models for embeddings
  • Cache frequently asked questions
  • Implement result pagination
  • Use batch processing for ingestion

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

+5
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon