
openrouter
by rawveg
A Claude Code Marketplace
SKILL.md
name: openrouter description: OpenRouter API - Unified access to 400+ AI models through one API
OpenRouter Skill
Comprehensive assistance with OpenRouter API development, providing unified access to hundreds of AI models through a single endpoint with intelligent routing, automatic fallbacks, and standardized interfaces.
When to Use This Skill
This skill should be triggered when:
- Making API calls to multiple AI model providers through a unified interface
- Implementing model fallback strategies or auto-routing
- Working with OpenAI-compatible SDKs but targeting multiple providers
- Configuring advanced sampling parameters (temperature, top_p, penalties)
- Setting up streaming responses or structured JSON outputs
- Comparing costs across different AI models
- Building applications that need automatic provider failover
- Implementing function/tool calling across different models
- Questions about OpenRouter-specific features (routing, fallbacks, zero completion insurance)
Quick Reference
Basic Chat Completion (Python)
from openai import OpenAI
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key="<OPENROUTER_API_KEY>",
)
completion = client.chat.completions.create(
model="openai/gpt-4o",
messages=[{"role": "user", "content": "What is the meaning of life?"}]
)
print(completion.choices[0].message.content)
Basic Chat Completion (JavaScript/TypeScript)
import OpenAI from 'openai';
const openai = new OpenAI({
baseURL: 'https://openrouter.ai/api/v1',
apiKey: '<OPENROUTER_API_KEY>',
});
const completion = await openai.chat.completions.create({
model: 'openai/gpt-4o',
messages: [{"role": 'user', "content": 'What is the meaning of life?'}],
});
console.log(completion.choices[0].message);
cURL Request
curl https://openrouter.ai/api/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENROUTER_API_KEY" \
-d '{
"model": "openai/gpt-4o",
"messages": [{"role": "user", "content": "What is the meaning of life?"}]
}'
Model Fallback Configuration (Python)
completion = client.chat.completions.create(
model="openai/gpt-4o",
extra_body={
"models": ["anthropic/claude-3.5-sonnet", "gryphe/mythomax-l2-13b"],
},
messages=[{"role": "user", "content": "Your prompt here"}]
)
Model Fallback Configuration (TypeScript)
const completion = await client.chat.completions.create({
model: 'openai/gpt-4o',
models: ['anthropic/claude-3.5-sonnet', 'gryphe/mythomax-l2-13b'],
messages: [{ role: 'user', content: 'Your prompt here' }],
});
Auto Router (Dynamic Model Selection)
completion = client.chat.completions.create(
model="openrouter/auto", # Automatically selects best model for the prompt
messages=[{"role": "user", "content": "Your prompt here"}]
)
Advanced Parameters Example
completion = client.chat.completions.create(
model="openai/gpt-4o",
messages=[{"role": "user", "content": "Write a creative story"}],
temperature=0.8, # Higher for creativity (0.0-2.0)
max_tokens=500, # Limit response length
top_p=0.9, # Nucleus sampling (0.0-1.0)
frequency_penalty=0.5, # Reduce repetition (-2.0-2.0)
presence_penalty=0.3 # Encourage topic diversity (-2.0-2.0)
)
Streaming Response
stream = client.chat.completions.create(
model="openai/gpt-4o",
messages=[{"role": "user", "content": "Tell me a story"}],
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end='')
JSON Mode (Structured Output)
completion = client.chat.completions.create(
model="openai/gpt-4o",
messages=[{
"role": "user",
"content": "Extract person's name, age, and city from: John is 30 and lives in NYC"
}],
response_format={"type": "json_object"}
)
Deterministic Output with Seed
completion = client.chat.completions.create(
model="openai/gpt-4o",
messages=[{"role": "user", "content": "Generate a random number"}],
seed=42, # Same seed = same output (when supported)
temperature=0.0 # Deterministic sampling
)
Key Concepts
Model Routing
OpenRouter provides intelligent routing capabilities:
- Auto Router (
openrouter/auto): Automatically selects the best model based on your prompt using NotDiamond - Fallback Models: Specify multiple models that automatically retry if primary fails
- Provider Routing: Automatically routes across providers for reliability
Authentication
- Uses Bearer token authentication with API keys
- API keys can be managed programmatically
- Compatible with OpenAI SDK authentication patterns
Model Naming Convention
Models use the format provider/model-name:
openai/gpt-4o- OpenAI's GPT-4 Optimizedanthropic/claude-3.5-sonnet- Anthropic's Claude 3.5 Sonnetgoogle/gemini-2.0-flash-exp:free- Google's free Gemini modelopenrouter/auto- Auto-routing system
Sampling Parameters
Temperature (0.0-2.0, default: 1.0)
- Lower = more predictable, focused responses
- Higher = more creative, diverse responses
- Use low (0.0-0.3) for factual tasks, high (0.8-1.5) for creative work
Top P (0.0-1.0, default: 1.0)
- Limits choices to percentage of likely tokens
- Dynamic filtering of improbable options
- Balance between consistency and variety
Frequency/Presence Penalties (-2.0-2.0, default: 0.0)
- Frequency: Discourages repeating tokens proportional to use
- Presence: Simpler penalty not scaled by count
- Positive values reduce repetition, negative encourage reuse
Max Tokens (integer)
- Sets maximum response length
- Cannot exceed context length minus prompt length
- Use to control costs and enforce concise replies
Response Formats
- Standard JSON: Default chat completion format
- Streaming: Server-Sent Events (SSE) with
stream: true - JSON Mode: Guaranteed valid JSON with
response_format: {"type": "json_object"} - Structured Outputs: Schema-validated JSON responses
Advanced Features
- Tool/Function Calling: Connect models to external APIs
- Multimodal Inputs: Support for images, PDFs, audio
- Prompt Caching: Reduce costs for repeated prompts
- Web Search Integration: Enhanced responses with web data
- Zero Completion Insurance: Protection against failed responses
- Logprobs: Access token probabilities for confidence analysis
Reference Files
This skill includes comprehensive documentation in references/:
- llms-full.md - Complete list of available models with metadata
- llms-small.md - Curated subset of popular models
- llms.md - Standard model listings
Use view to read specific reference files when detailed model information is needed.
Working with This Skill
For Beginners
- Start with basic chat completion examples (Python/JavaScript/cURL above)
- Use the standard OpenAI SDK for easy integration
- Try simple model names like
openai/gpt-4ooranthropic/claude-3.5-sonnet - Keep parameters simple initially (just model and messages)
For Intermediate Users
- Implement model fallback arrays for reliability
- Experiment with sampling parameters (temperature, top_p)
- Use streaming for better UX in conversational apps
- Try
openrouter/autofor automatic model selection - Implement JSON mode for structured data extraction
For Advanced Users
- Fine-tune multiple sampling parameters together
- Implement custom routing logic with fallback chains
- Use logprobs for confidence scoring
- Leverage tool/function calling capabilities
- Optimize costs by selecting appropriate models per task
- Implement prompt caching strategies
- Use seed parameter for reproducible testing
Common Patterns
Error Handling with Fallbacks
try:
completion = client.chat.completions.create(
model="openai/gpt-4o",
extra_body={
"models": [
"anthropic/claude-3.5-sonnet",
"google/gemini-2.0-flash-exp:free"
]
},
messages=[{"role": "user", "content": "Your prompt"}]
)
except Exception as e:
print(f"All models failed: {e}")
Cost-Optimized Routing
# Use cheaper models for simple tasks
simple_completion = client.chat.completions.create(
model="google/gemini-2.0-flash-exp:free",
messages=[{"role": "user", "content": "Simple question"}]
)
# Use premium models for complex tasks
complex_completion = client.chat.completions.create(
model="openai/o1",
messages=[{"role": "user", "content": "Complex reasoning task"}]
)
Context-Aware Temperature
# Low temperature for factual responses
factual = client.chat.completions.create(
model="openai/gpt-4o",
temperature=0.2,
messages=[{"role": "user", "content": "What is the capital of France?"}]
)
# High temperature for creative content
creative = client.chat.completions.create(
model="openai/gpt-4o",
temperature=1.2,
messages=[{"role": "user", "content": "Write a unique story opening"}]
)
Resources
Official Documentation
- API Reference: https://openrouter.ai/docs/api-reference/overview
- Quickstart Guide: https://openrouter.ai/docs/quickstart
- Model List: https://openrouter.ai/docs/models
- Parameters Guide: https://openrouter.ai/docs/api-reference/parameters
Key Endpoints
- Chat Completions:
POST https://openrouter.ai/api/v1/chat/completions - List Models:
GET https://openrouter.ai/api/v1/models - Generation Info:
GET https://openrouter.ai/api/v1/generation
Notes
- OpenRouter normalizes API schemas across all providers
- Uses OpenAI-compatible API format for easy migration
- Automatic provider fallback if models are rate-limited or down
- Pricing based on actual model used (important for fallbacks)
- Response includes metadata about which model processed the request
- All models support streaming via Server-Sent Events
- Compatible with popular frameworks (LangChain, Vercel AI SDK, etc.)
Best Practices
- Always implement fallbacks for production applications
- Use appropriate temperature based on task type (low for factual, high for creative)
- Set max_tokens to control costs and response length
- Enable streaming for better user experience in chat applications
- Use JSON mode when you need guaranteed structured output
- Test with seed parameter for reproducible results during development
- Monitor costs by selecting appropriate models per task
- Use auto-routing when unsure which model performs best
- Implement proper error handling for rate limits and failures
- Cache prompts for repeated requests to reduce costs
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
