← Back to list

running-placebo-analysis
by pymc-labs
A Python package for causal inference in quasi-experimental settings
⭐ 1,093🍴 91📅 Jan 21, 2026
SKILL.md
name: running-placebo-analysis description: Performs placebo-in-time sensitivity analysis to validate causal claims. Use when checking model robustness, verifying lack of pre-intervention effects, or ensuring observed effects are not spurious.
Running Placebo Analysis
Executes placebo-in-time sensitivity analysis to validate causal experiments.
Workflow
- Define Experiment Factory: Create a function that returns a fitted CausalPy experiment (e.g., ITS, DiD, SC) given a dataset and time boundaries.
- Configure Analysis: Initialize
PlaceboAnalysiswith the factory, dataset, intervention dates, and number of folds (cuts). - Run Analysis: Execute
.run()to fit models on pre-intervention data folds. - Evaluate Results: Compare placebo effects (which should be null) to the actual intervention effect. Use histograms and hierarchical models to quantify the "status quo" distribution.
Key Concepts
- Placebo-in-time: Simulating an intervention at a time when none occurred to check if the model falsely detects an effect.
- Fold: A slice of pre-intervention data used to test a placebo period.
- Factory Pattern: Decouples the placebo logic from the specific CausalPy experiment type.
References
- Placebo-in-time Implementation: Full code for the
PlaceboAnalysisclass, usage examples, and hierarchical status-quo modeling.
Score
Total Score
80/100
Based on repository quality metrics
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
○説明文
100文字以上の説明がある
0/10
✓人気
GitHub Stars 1000以上
+15
✓最近の活動
1ヶ月以内に更新
+10
✓フォーク
10回以上フォークされている
+5
○Issue管理
オープンIssueが50未満
0/5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
Reviews
💬
Reviews coming soon
