
test-data-management
by proffesor-for-testing
Agentic QE Fleet is an open-source AI-powered quality engineering platform designed for use with Claude Code, featuring specialized agents and skills to support testing activities for a product at any stage of the SDLC. Free to use, fork, build, and contribute. Based on the Agentic QE Framework created by Dragan Spiridonov.
SKILL.md
name: test-data-management description: "Strategic test data generation, management, and privacy compliance. Use when creating test data, handling PII, ensuring GDPR/CCPA compliance, or scaling data generation for realistic testing scenarios." category: specialized-testing priority: high tokenEstimate: 1000 agents: [qe-test-data-architect, qe-test-executor, qe-security-scanner] implementation_status: optimized optimization_version: 1.0 last_optimized: 2025-12-02 dependencies: [] quick_reference_card: true tags: [test-data, faker, synthetic, gdpr, pii, anonymization, factories]
Test Data Management
<default_to_action> When creating or managing test data:
- NEVER use production PII directly
- GENERATE synthetic data with faker libraries
- ANONYMIZE production data if used (mask, hash)
- ISOLATE test data (transactions, per-test cleanup)
- SCALE with batch generation (10k+ records/sec)
Quick Data Strategy:
- Unit tests: Minimal data (just enough)
- Integration: Realistic data (full complexity)
- Performance: Volume data (10k+ records)
Critical Success Factors:
- 40% of test failures from inadequate data
- GDPR fines up to €20M for PII violations
- Never store production PII in test environments </default_to_action>
Quick Reference Card
When to Use
- Creating test datasets
- Handling sensitive data
- Performance testing with volume
- GDPR/CCPA compliance
Data Strategies
| Type | When | Size |
|---|---|---|
| Minimal | Unit tests | 1-10 records |
| Realistic | Integration | 100-1000 records |
| Volume | Performance | 10k+ records |
| Edge cases | Boundary testing | Targeted |
Privacy Techniques
| Technique | Use Case |
|---|---|
| Synthetic | Generate fake data (preferred) |
| Masking | j***@example.com |
| Hashing | Irreversible pseudonymization |
| Tokenization | Reversible with key |
Synthetic Data Generation
import { faker } from '@faker-js/faker';
// Seed for reproducibility
faker.seed(123);
function generateUser() {
return {
id: faker.string.uuid(),
email: faker.internet.email(),
firstName: faker.person.firstName(),
lastName: faker.person.lastName(),
phone: faker.phone.number(),
address: {
street: faker.location.streetAddress(),
city: faker.location.city(),
zip: faker.location.zipCode()
},
createdAt: faker.date.past()
};
}
// Generate 1000 users
const users = Array.from({ length: 1000 }, generateUser);
Test Data Builder Pattern
class UserBuilder {
private user: Partial<User> = {};
asAdmin() {
this.user.role = 'admin';
this.user.permissions = ['read', 'write', 'delete'];
return this;
}
asCustomer() {
this.user.role = 'customer';
this.user.permissions = ['read'];
return this;
}
withEmail(email: string) {
this.user.email = email;
return this;
}
build(): User {
return {
id: this.user.id ?? faker.string.uuid(),
email: this.user.email ?? faker.internet.email(),
role: this.user.role ?? 'customer',
...this.user
} as User;
}
}
// Usage
const admin = new UserBuilder().asAdmin().withEmail('admin@test.com').build();
const customer = new UserBuilder().asCustomer().build();
Data Anonymization
// Masking
function maskEmail(email) {
const [user, domain] = email.split('@');
return `${user[0]}***@${domain}`;
}
// john@example.com → j***@example.com
function maskCreditCard(cc) {
return `****-****-****-${cc.slice(-4)}`;
}
// 4242424242424242 → ****-****-****-4242
// Anonymize production data
const anonymizedUsers = prodUsers.map(user => ({
id: user.id, // Keep ID for relationships
email: `user-${user.id}@example.com`, // Fake email
firstName: faker.person.firstName(), // Generated
phone: null, // Remove PII
createdAt: user.createdAt // Keep non-PII
}));
Database Transaction Isolation
// Best practice: use transactions for cleanup
beforeEach(async () => {
await db.beginTransaction();
});
afterEach(async () => {
await db.rollbackTransaction(); // Auto cleanup!
});
test('user registration', async () => {
const user = await userService.register({
email: 'test@example.com'
});
expect(user.id).toBeDefined();
// Automatic rollback after test - no cleanup needed
});
Volume Data Generation
// Generate 10,000 users efficiently
async function generateLargeDataset(count = 10000) {
const batchSize = 1000;
const batches = Math.ceil(count / batchSize);
for (let i = 0; i < batches; i++) {
const users = Array.from({ length: batchSize }, (_, index) => ({
id: i * batchSize + index,
email: `user${i * batchSize + index}@example.com`,
firstName: faker.person.firstName()
}));
await db.users.insertMany(users); // Batch insert
console.log(`Batch ${i + 1}/${batches}`);
}
}
Agent-Driven Data Generation
// High-speed generation with constraints
await Task("Generate Test Data", {
schema: 'ecommerce',
count: { users: 10000, products: 500, orders: 5000 },
preserveReferentialIntegrity: true,
constraints: {
age: { min: 18, max: 90 },
roles: ['customer', 'admin']
}
}, "qe-test-data-architect");
// GDPR-compliant anonymization
await Task("Anonymize Production Data", {
source: 'production-snapshot',
piiFields: ['email', 'phone', 'ssn'],
method: 'pseudonymization',
retainStructure: true
}, "qe-test-data-architect");
Agent Coordination Hints
Memory Namespace
aqe/test-data-management/
├── schemas/* - Data schemas
├── generators/* - Generator configs
├── anonymization/* - PII handling rules
└── fixtures/* - Reusable fixtures
Fleet Coordination
const dataFleet = await FleetManager.coordinate({
strategy: 'test-data-generation',
agents: [
'qe-test-data-architect', // Generate data
'qe-test-executor', // Execute with data
'qe-security-scanner' // Validate no PII exposure
],
topology: 'sequential'
});
Related Skills
- database-testing - Schema and integrity testing
- compliance-testing - GDPR/CCPA compliance
- performance-testing - Volume data for perf tests
Remember
Test data is infrastructure, not an afterthought. 40% of test failures are caused by inadequate test data. Poor data = poor tests.
Never use production PII directly. GDPR fines up to €20M or 4% of revenue. Always use synthetic data or properly anonymized production snapshots.
With Agents: qe-test-data-architect generates 10k+ records/sec with realistic patterns, relationships, and constraints. Agents ensure GDPR/CCPA compliance automatically and eliminate test data bottlenecks.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon

