Back to list
proffesor-for-testing

qe-test-execution

by proffesor-for-testing

Agentic QE Fleet is an open-source AI-powered quality engineering platform designed for use with Claude Code, featuring specialized agents and skills to support testing activities for a product at any stage of the SDLC. Free to use, fork, build, and contribute. Based on the Agentic QE Framework created by Dragan Spiridonov.

132🍴 27📅 Jan 23, 2026

SKILL.md


name: "QE Test Execution" description: "Parallel test execution orchestration with intelligent scheduling, retry logic, and comprehensive result aggregation."

QE Test Execution

Purpose

Guide the use of v3's test execution capabilities including parallel orchestration, smart test selection, flaky test handling, and distributed execution across multiple environments.

Activation

  • When running test suites
  • When optimizing test execution time
  • When handling flaky tests
  • When setting up CI/CD test pipelines
  • When executing tests across environments

Quick Start

# Run all tests with parallelization
aqe test run --parallel --workers 4

# Run affected tests only
aqe test run --affected --since HEAD~1

# Run with retry for flaky tests
aqe test run --retry 3 --retry-delay 1000

# Run specific test types
aqe test run --type unit,integration --exclude e2e

Agent Workflow

// Orchestrate test execution
Task("Execute test suite", `
  Run the full test suite with:
  - 4 parallel workers
  - Retry flaky tests up to 3 times
  - Generate JUnit report
  - Fail fast on critical tests
  Report results and any failures.
`, "qe-test-executor")

// Smart test selection
Task("Run affected tests", `
  Analyze changes in PR #123 and:
  - Identify affected test files
  - Run only relevant tests
  - Include integration tests for changed modules
  - Report coverage delta
`, "qe-test-selector")

Execution Strategies

1. Parallel Execution

await testExecutor.runParallel({
  suites: ['unit', 'integration'],
  workers: 4,
  distribution: 'by-file',  // or 'by-test', 'by-duration'
  isolation: 'process',
  sharding: {
    enabled: true,
    total: 4,
    index: process.env.SHARD_INDEX
  }
});

2. Smart Test Selection

await testExecutor.runAffected({
  changes: gitChanges,
  selection: {
    direct: true,      // Tests for changed files
    transitive: true,  // Tests for dependents
    integration: true  // Integration tests touching changed code
  },
  fallback: 'full-suite'  // If analysis fails
});

3. Flaky Test Handling

await testExecutor.handleFlaky({
  detection: {
    enabled: true,
    threshold: 0.1,  // 10% flake rate
    window: 100      // Last 100 runs
  },
  strategy: {
    retry: 3,
    quarantine: true,
    notify: ['#flaky-tests']
  }
});

Execution Configuration

execution:
  parallel:
    workers: auto  # CPU cores - 1
    timeout: 30000
    bail: false

  retry:
    count: 2
    delay: 1000
    only_failed: true

  reporting:
    formats: [junit, json, html]
    include_timing: true
    include_logs: true

  environments:
    - name: node-18
      image: node:18-alpine
    - name: node-20
      image: node:20-alpine

CI/CD Integration

# GitHub Actions example
test:
  runs-on: ubuntu-latest
  strategy:
    matrix:
      shard: [1, 2, 3, 4]
  steps:
    - uses: actions/checkout@v4
    - name: Run tests
      run: |
        aqe test run \
          --shard ${{ matrix.shard }}/4 \
          --parallel \
          --report junit
    - name: Upload results
      uses: actions/upload-artifact@v4
      with:
        name: test-results-${{ matrix.shard }}
        path: reports/

Result Aggregation

interface ExecutionResults {
  summary: {
    total: number;
    passed: number;
    failed: number;
    skipped: number;
    flaky: number;
    duration: number;
  };
  shards: ShardResult[];
  failures: TestFailure[];
  flakyTests: FlakyTest[];
  coverage: CoverageReport;
  timing: TimingAnalysis;
}

Coordination

Primary Agents: qe-test-executor, qe-test-selector, qe-flaky-detector Coordinator: qe-test-execution-coordinator Related Skills: qe-test-generation, qe-coverage-analysis

Score

Total Score

85/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

+5
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon