
performance-testing
by proffesor-for-testing
Agentic QE Fleet is an open-source AI-powered quality engineering platform designed for use with Claude Code, featuring specialized agents and skills to support testing activities for a product at any stage of the SDLC. Free to use, fork, build, and contribute. Based on the Agentic QE Framework created by Dragan Spiridonov.
SKILL.md
name: performance-testing description: "Test application performance, scalability, and resilience. Use when planning load testing, stress testing, or optimizing system performance." category: specialized-testing priority: high tokenEstimate: 1100 agents: [qe-performance-tester, qe-quality-analyzer, qe-production-intelligence] implementation_status: optimized optimization_version: 1.0 last_optimized: 2025-12-02 dependencies: [] quick_reference_card: true tags: [performance, load-testing, stress-testing, scalability, k6, bottlenecks]
Performance Testing
<default_to_action> When testing performance or planning load tests:
- DEFINE SLOs: p95 response time, throughput, error rate targets
- IDENTIFY critical paths: revenue flows, high-traffic pages, key APIs
- CREATE realistic scenarios: user journeys, think time, varied data
- EXECUTE with monitoring: CPU, memory, DB queries, network
- ANALYZE bottlenecks and fix before production
Quick Test Type Selection:
- Expected load validation → Load testing
- Find breaking point → Stress testing
- Sudden traffic spike → Spike testing
- Memory leaks, resource exhaustion → Endurance/soak testing
- Horizontal/vertical scaling → Scalability testing
Critical Success Factors:
- Performance is a feature, not an afterthought
- Test early and often, not just before release
- Focus on user-impacting bottlenecks </default_to_action>
Quick Reference Card
When to Use
- Before major releases
- After infrastructure changes
- Before scaling events (Black Friday)
- When setting SLAs/SLOs
Test Types
| Type | Purpose | When |
|---|---|---|
| Load | Expected traffic | Every release |
| Stress | Beyond capacity | Quarterly |
| Spike | Sudden surge | Before events |
| Endurance | Memory leaks | After code changes |
| Scalability | Scaling validation | Infrastructure changes |
Key Metrics
| Metric | Target | Why |
|---|---|---|
| p95 response | < 200ms | User experience |
| Throughput | 10k req/min | Capacity |
| Error rate | < 0.1% | Reliability |
| CPU | < 70% | Headroom |
| Memory | < 80% | Stability |
Tools
- k6: Modern, JS-based, CI/CD friendly
- JMeter: Enterprise, feature-rich
- Artillery: Simple YAML configs
- Gatling: Scala, great reporting
Agent Coordination
qe-performance-tester: Load test orchestrationqe-quality-analyzer: Results analysisqe-production-intelligence: Production comparison
Defining SLOs
Bad: "The system should be fast" Good: "p95 response time < 200ms under 1,000 concurrent users"
export const options = {
thresholds: {
http_req_duration: ['p(95)<200'], // 95% < 200ms
http_req_failed: ['rate<0.01'], // < 1% failures
},
};
Realistic Scenarios
Bad: Every user hits homepage repeatedly Good: Model actual user behavior
// Realistic distribution
// 40% browse, 30% search, 20% details, 10% checkout
export default function () {
const action = Math.random();
if (action < 0.4) browse();
else if (action < 0.7) search();
else if (action < 0.9) viewProduct();
else checkout();
sleep(randomInt(1, 5)); // Think time
}
Common Bottlenecks
Database
Symptoms: Slow queries under load, connection pool exhaustion Fixes: Add indexes, optimize N+1 queries, increase pool size, read replicas
N+1 Queries
// BAD: 100 orders = 101 queries
const orders = await Order.findAll();
for (const order of orders) {
const customer = await Customer.findById(order.customerId);
}
// GOOD: 1 query
const orders = await Order.findAll({ include: [Customer] });
Synchronous Processing
Problem: Blocking operations in request path (sending email during checkout) Fix: Use message queues, process async, return immediately
Memory Leaks
Detection: Endurance testing, memory profiling Common causes: Event listeners not cleaned, caches without eviction
External Dependencies
Solutions: Aggressive timeouts, circuit breakers, caching, graceful degradation
k6 CI/CD Example
// performance-test.js
import http from 'k6/http';
import { check, sleep } from 'k6';
export const options = {
stages: [
{ duration: '1m', target: 50 }, // Ramp up
{ duration: '3m', target: 50 }, // Steady
{ duration: '1m', target: 0 }, // Ramp down
],
thresholds: {
http_req_duration: ['p(95)<200'],
http_req_failed: ['rate<0.01'],
},
};
export default function () {
const res = http.get('https://api.example.com/products');
check(res, {
'status is 200': (r) => r.status === 200,
'response time < 200ms': (r) => r.timings.duration < 200,
});
sleep(1);
}
# GitHub Actions
- name: Run k6 test
uses: grafana/k6-action@v0.3.0
with:
filename: performance-test.js
Analyzing Results
Good Results
Load: 1,000 users | p95: 180ms | Throughput: 5,000 req/s
Error rate: 0.05% | CPU: 65% | Memory: 70%
Problems
Load: 1,000 users | p95: 3,500ms ❌ | Throughput: 500 req/s ❌
Error rate: 5% ❌ | CPU: 95% ❌ | Memory: 90% ❌
Root Cause Analysis
- Correlate metrics: When response time spikes, what changes?
- Check logs: Errors, warnings, slow queries
- Profile code: Where is time spent?
- Monitor resources: CPU, memory, disk
- Trace requests: End-to-end flow
Anti-Patterns
| ❌ Anti-Pattern | ✅ Better |
|---|---|
| Testing too late | Test early and often |
| Unrealistic scenarios | Model real user behavior |
| 0 to 1000 users instantly | Ramp up gradually |
| No monitoring during tests | Monitor everything |
| No baseline | Establish and track trends |
| One-time testing | Continuous performance testing |
Agent-Assisted Performance Testing
// Comprehensive load test
await Task("Load Test", {
target: 'https://api.example.com',
scenarios: {
checkout: { vus: 100, duration: '5m' },
search: { vus: 200, duration: '5m' },
browse: { vus: 500, duration: '5m' }
},
thresholds: {
'http_req_duration': ['p(95)<200'],
'http_req_failed': ['rate<0.01']
}
}, "qe-performance-tester");
// Bottleneck analysis
await Task("Analyze Bottlenecks", {
testResults: perfTest,
metrics: ['cpu', 'memory', 'db_queries', 'network']
}, "qe-performance-tester");
// CI integration
await Task("CI Performance Gate", {
mode: 'smoke',
duration: '1m',
vus: 10,
failOn: { 'p95_response_time': 300, 'error_rate': 0.01 }
}, "qe-performance-tester");
Agent Coordination Hints
Memory Namespace
aqe/performance/
├── results/* - Test execution results
├── baselines/* - Performance baselines
├── bottlenecks/* - Identified bottlenecks
└── trends/* - Historical trends
Fleet Coordination
const perfFleet = await FleetManager.coordinate({
strategy: 'performance-testing',
agents: [
'qe-performance-tester',
'qe-quality-analyzer',
'qe-production-intelligence',
'qe-deployment-readiness'
],
topology: 'sequential'
});
Pre-Production Checklist
- Load test passed (expected traffic)
- Stress test passed (2-3x expected)
- Spike test passed (sudden surge)
- Endurance test passed (24+ hours)
- Database indexes in place
- Caching configured
- Monitoring and alerting set up
- Performance baseline established
Related Skills
- agentic-quality-engineering - Agent coordination
- api-testing-patterns - API performance
- chaos-engineering-resilience - Resilience testing
Remember
Performance is a feature: Test it like functionality Test continuously: Not just before launch Monitor production: Synthetic + real user monitoring Fix what matters: Focus on user-impacting bottlenecks Trend over time: Catch degradation early
With Agents: Agents automate load testing, analyze bottlenecks, and compare with production. Use agents to maintain performance at scale.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon

