
performance-optimization
by knopki
There's no place like $HOME
SKILL.md
name: performance-optimization description: Use when optimizing code for performance, reducing bundle size, improving load times, or fixing performance bottlenecks. Emphasizes measurement-driven optimization.
Performance Optimization Skill
Systematic approach to identifying and fixing performance issues.
Core Principle
Measure, don't guess. Optimization without data is guesswork.
The Cardinal Rule
❌ NEVER optimize without measuring first
Why: Premature optimization wastes time on non-issues while missing real problems.
Exception: Obvious O(n²) algorithms when O(n) alternatives exist.
Optimization Process
1. Measure Current State (Baseline)
Before touching any code, establish metrics:
Frontend Performance:
# Chrome DevTools Performance tab
# Lighthouse audit
npm run build && du -sh dist/ # Bundle size
Backend Performance:
# Add timing logs
start = Time.now
result = expensive_operation()
elapsed = Time.now - start
Logger.info("Operation took #{elapsed}ms")
Database:
# PostgreSQL
EXPLAIN ANALYZE SELECT ...;
# Check query time in logs
grep "SELECT" logs/production.log | grep "Duration:"
Metrics to capture:
- Load time / response time
- Time to interactive
- Bundle size
- Memory usage
- Query duration
- Render time
2. Profile to Find Bottlenecks
Don't guess where the problem is - profile:
Browser Profiling:
- Chrome DevTools > Performance tab
- Record interaction
- Look for long tasks (> 50ms)
- Check for layout thrashing
Server Profiling:
# Add detailed timing
defmodule Profiler do
def measure(label, func) do
start = System.monotonic_time(:millisecond)
result = func.()
elapsed = System.monotonic_time(:millisecond) - start
Logger.info("#{label}: #{elapsed}ms")
result
end
end
# Use it
Profiler.measure("Database query", fn ->
Repo.all(User)
end)
React Profiling:
# React DevTools Profiler
# Look for:
# - Unnecessary re-renders
# - Slow components (> 16ms for 60fps)
# - Large component trees
3. Identify Root Cause
Common performance issues:
Frontend:
- Large bundle size (lazy load, code split)
- Unnecessary re-renders (memoization)
- Blocking JavaScript (defer, async)
- Unoptimized images (WebP, lazy loading)
- Too many network requests (bundle, cache)
- Memory leaks (cleanup useEffect)
Backend:
- N+1 queries (preload associations)
- Missing database indexes
- Expensive computations in loops
- Synchronous external API calls
- Large JSON responses
- Inefficient algorithms
Database:
- Missing indexes
- Inefficient query structure
- Too many joins
- Fetching unnecessary columns
- No query result caching
4. Apply Targeted Optimization
One change at a time - Measure impact of each change
Frontend Optimizations
Bundle Size Reduction:
// Before: Import entire library
import _ from "lodash";
// After: Import only what's needed
import debounce from "lodash/debounce";
// Or: Use native alternatives
const unique = [...new Set(array)]; // Instead of _.uniq(array)
React Performance:
// Before: Re-renders on every parent render
function ChildComponent({ items }) {
return <div>{items.map(...)}</div>
}
// After: Only re-render when items change
const ChildComponent = React.memo(function ChildComponent({ items }) {
return <div>{items.map(...)}</div>
}, (prev, next) => prev.items === next.items)
// Before: Recreates function every render
function Parent() {
const handleClick = () => { ... }
return <Child onClick={handleClick} />
}
// After: Stable function reference
function Parent() {
const handleClick = useCallback(() => { ... }, [])
return <Child onClick={handleClick} />
}
Code Splitting:
// Before: All in main bundle
import HeavyComponent from './HeavyComponent'
// After: Lazy load when needed
const HeavyComponent = React.lazy(() => import('./HeavyComponent'))
function App() {
return (
<Suspense fallback={<Loading />}>
<HeavyComponent />
</Suspense>
)
}
Image Optimization:
// Before: Full-size image
<img src="/hero.jpg" />
// After: Responsive, lazy-loaded
<img
src="/hero-800w.webp"
srcSet="/hero-400w.webp 400w, /hero-800w.webp 800w"
loading="lazy"
alt="Hero image"
/>
Backend Optimizations
N+1 Query Fix:
# Before: N+1 queries (1 for users + N for posts)
users = Repo.all(User)
Enum.map(users, fn user ->
posts = Repo.all(from p in Post, where: p.user_id == ^user.id)
{user, posts}
end)
# After: 2 queries total
users = Repo.all(User) |> Repo.preload(:posts)
Enum.map(users, fn user -> {user, user.posts} end)
Database Indexing:
-- Before: Slow query
SELECT * FROM users WHERE email = 'user@example.com';
-- Seq Scan (5000ms)
-- After: Add index
CREATE INDEX idx_users_email ON users(email);
-- Index Scan (2ms)
Caching:
# Before: Expensive calculation every request
def get_popular_posts do
# Complex aggregation query (500ms)
Repo.all(from p in Post, ...)
end
# After: Cache for 5 minutes
def get_popular_posts do
Cachex.fetch(:app_cache, "popular_posts", fn ->
result = Repo.all(from p in Post, ...)
{:commit, result, ttl: :timer.minutes(5)}
end)
end
Batch Processing:
# Before: Process one at a time
Enum.each(user_ids, fn id ->
user = Repo.get(User, id)
send_email(user)
end)
# After: Batch fetch
users = Repo.all(from u in User, where: u.id in ^user_ids)
Enum.each(users, &send_email/1)
Algorithm Optimization
Reduce Complexity:
// Before: O(n²) - nested loops
function findDuplicates(arr: number[]): number[] {
const duplicates = [];
for (let i = 0; i < arr.length; i++) {
for (let j = i + 1; j < arr.length; j++) {
if (arr[i] === arr[j] && !duplicates.includes(arr[i])) {
duplicates.push(arr[i]);
}
}
}
return duplicates;
}
// After: O(n) - single pass with Set
function findDuplicates(arr: number[]): number[] {
const seen = new Set<number>();
const duplicates = new Set<number>();
for (const num of arr) {
if (seen.has(num)) {
duplicates.add(num);
}
seen.add(num);
}
return Array.from(duplicates);
}
5. Measure Impact (Proof of Work)
ALWAYS measure after optimization:
## Optimization: [What was changed]
### Before
- Load time: 3.2s
- Bundle size: 850KB
- Time to interactive: 4.1s
### Changes
- Lazy loaded HeavyComponent
- Switched to lodash-es for tree shaking
- Added React.memo to ProductList
### After
- Load time: 1.8s (-44%)
- Bundle size: 520KB (-39%)
- Time to interactive: 2.3s (-44%)
### Evidence
```bash
# Before
$ npm run build
dist/main.js 850.2 KB
# After
$ npm run build
dist/main.js 520.8 KB
```
**Use proof-of-work skill to document evidence**
### 6. Verify Correctness
**Tests must still pass:**
```bash
# Run full test suite
npm test # Frontend
mix test # Backend
# Manual verification
# - Feature still works
# - Edge cases handled
# - No new bugs introduced
Common Optimization Targets
Frontend Checklist
- Bundle size < 200KB (gzipped)
- First Contentful Paint < 1.5s
- Time to Interactive < 3s
- No layout shift (CLS < 0.1)
- Images optimized (WebP, lazy loading)
- Code split by route
- Unused code removed (tree shaking)
- CSS critical path optimized
Backend Checklist
- API response time < 200ms (p95)
- Database queries optimized (EXPLAIN ANALYZE)
- No N+1 queries
- Appropriate indexes exist
- Expensive operations cached
- Background jobs for slow tasks
- Connection pooling configured
- Pagination for large datasets
Database Checklist
- Indexes on frequently queried columns
- Query execution plan reviewed
- No full table scans
- Appropriate use of LIMIT
- Joins optimized (smallest table first)
- Statistics up to date (ANALYZE)
Optimization Patterns
Lazy Loading Pattern
// Route-based code splitting
const routes = [
{
path: "/admin",
component: lazy(() => import("./pages/Admin")),
},
{
path: "/dashboard",
component: lazy(() => import("./pages/Dashboard")),
},
];
Memoization Pattern
// Expensive calculation
const ExpensiveComponent = ({ data }) => {
// Only recalculate when data changes
const processedData = useMemo(() => {
return data.map(item => expensiveTransform(item))
}, [data])
return <div>{processedData.map(...)}</div>
}
Database Query Optimization Pattern
# Instead of multiple queries
users = Repo.all(User)
posts = Repo.all(Post)
comments = Repo.all(Comment)
# Use join and preload
users =
User
|> join(:left, [u], p in assoc(u, :posts))
|> join(:left, [u, p], c in assoc(p, :comments))
|> preload([u, p, c], [posts: {p, comments: c}])
|> Repo.all()
Anti-Patterns
❌ Optimizing the Wrong Thing
BAD: Spending hours optimizing function that runs once
GOOD: Optimize the function that runs 10,000 times per page load
Always profile first to find real bottlenecks
❌ Premature Optimization
BAD: "This might be slow, let me optimize it"
GOOD: "This IS slow (measured 500ms), let me optimize it"
❌ Micro-optimizations
BAD: Replacing `.map()` with `for` loop to save 1ms
GOOD: Reducing bundle size by 200KB to save 1000ms
Focus on high-impact optimizations
❌ Breaking Functionality for Performance
BAD: Remove feature to make it faster
GOOD: Keep feature, make implementation faster
Performance should not come at cost of correctness
❌ Optimizing Without Evidence
BAD: "I think this will be faster" [changes code]
GOOD: "Profiler shows this takes 80% of time" [measures, optimizes, measures again]
Trade-offs to Consider
Performance vs Readability:
// More readable
const result = items.filter((item) => item.active).map((item) => item.name);
// Faster (one loop instead of two)
const result = [];
for (const item of items) {
if (item.active) {
result.push(item.name);
}
}
Question: Is the perf gain worth the readability loss? Profile first.
Performance vs Maintainability:
- Caching adds complexity
- Memoization adds memory overhead
- Code splitting adds bundle management
Always document the trade-off made
Tools & Commands
Frontend:
# Bundle analysis
npm run build -- --analyze
# Lighthouse audit
npx lighthouse https://example.com --view
# Size analysis
npx webpack-bundle-analyzer dist/stats.json
Backend:
# Database query analysis
EXPLAIN ANALYZE SELECT ...;
# Profile Elixir code
:eprof.start()
:eprof.profile(fn -> YourModule.function() end)
:eprof.stop()
Integration with Other Skills
- Use proof-of-work skill to document measurements
- Use boy-scout-rule skill while optimizing (leave better than found)
- Use simplicity-principles skill (simpler is often faster)
- Use code-reviewer skill to verify optimization quality
Remember
- Measure first - Find real bottlenecks
- One change at a time - Know what helped
- Measure impact - Verify improvement
- Preserve correctness - Tests must pass
- Document trade-offs - Explain why
Fast code that's wrong is useless. Correct code that's fast enough is perfect.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon


