Back to list
huifer

virtual-screening

by huifer

Drug Discovery Intelligence plugin for Claude Code. AI-powered target validation, competitive intelligence, literature analysis & clinical trials insights. Integrates Open Targets, ChEMBL, PubMed & 5+ databases.

2🍴 0📅 Jan 20, 2026

SKILL.md


name: virtual-screening description: | Molecular docking and virtual screening for drug discovery. Use for screening compound libraries against protein targets, predicting binding affinities, and identifying lead candidates.

Keywords: docking, virtual screening, molecular docking, binding affinity, lead identification category: Computational Chemistry tags: [docking, screening, molecular-modeling, drug-design] version: 1.0.0 author: Drug Discovery Team dependencies:

  • rdkit
  • openbabel
  • docking-engine

Virtual Screening Skill

Molecular docking and virtual screening capabilities for lead identification.

Quick Start

/virtual-screening EGFR --library compounds.sdf --top 10
/dock "target.pdb" --ligands "ligands.smi" --engine vina
/screen-kinases --scaffold quinazoline --threshold -7.0

Capabilities

1. Molecular Docking

Predict binding poses and affinities for compound-target pairs.

Supported docking engines:

  • AutoDock Vina - Fast, widely used
  • SMINA - Vina derivative with custom scoring
  • DiffDock - Deep learning-based
  • GNINA - Graph neural network scoring

2. Virtual Screening

Screen large compound libraries against targets.

Library sources:

  • ChEMBL (bioactive compounds)
  • PubChem (diverse compounds)
  • ZINC (commercially available)
  • Enamine (make-on-demand)

3. Binding Affinity Prediction

Estimate binding energies using scoring functions.

4. Pose Analysis

Analyze binding modes and key interactions.

Docking Workflow

1. Target Preparation
   ├── Retrieve PDB structure
   ├── Remove water/ligands
   ├── Add hydrogens
   └── Define binding site

2. Ligand Preparation
   ├── Generate 3D conformations
   ├── Minimize energy
   └── Generate protonation states

3. Docking
   ├── Set grid box
   ├── Run docking engine
   └── Generate poses

4. Analysis
   ├── Score poses
   ├── Analyze interactions
   └── Rank compounds

Output Structure

Docking Results

# Virtual Screening Results: EGFR Kinase

## Summary
| Metric | Value |
|--------|-------|
| Compounds screened | 10,000 |
| Successful dockings | 9,847 |
| Top hits (≤ -8 kcal/mol) | 47 |
| Processing time | 2.5 hours |

## Top 10 Compounds

| Rank | Compound ID | Affinity (kcal/mol) | LE | LLE | Interactions |
|------|-------------|---------------------|-----|-----|--------------|
| 1 | CHEMBL210 | -10.2 | 0.42 | 6.8 | H-bond: Met793, hinge |
| 2 | CHEMBL456 | -9.8 | 0.38 | 6.5 | H-bond: Met793, Lys745 |
| 3 | ZINC12345 | -9.5 | 0.35 | 6.2 | π-π: Phe723 |

## Binding Mode Analysis (Top Hit)

### Compound: CHEMBL210
**Affinity**: -10.2 kcal/mol
**LE**: 0.42
**LLE**: 6.8

**Key Interactions**:
- H-bond with Met793 (hinge region)
- H-bond with Thr854
- π-π stacking with Phe723
- Hydrophobic pocket: Le718, Val726

## Pharmacophore Features

1. **Hinge binder**: N-heterocycle H-bond donor/acceptor
2. **Gatekeeper interaction**: Small hydrophobic group
3. **Solvent front**: Polar substituent
4. **Back pocket**: Extended hydrophobic moiety

## Recommendations

1. **Synthesis priority**: Top 5 compounds
2. **SAR exploration**: Around quinazoline core
3. **Experimental validation**: SPR, ITC binding assays

Scoring Metrics

MetricFormulaGood Range
Binding affinityDocking score≤ -7 kcal/mol
Ligand Efficiency (LE)Score / Heavy atoms≥ 0.3
LLE (LipE)Score - LogP≥ 6
SizeHeavy atom count20-40

Running Scripts

# Virtual screening with Vina
python scripts/virtual_screening.py \
  --target EGFR \
  --library data/compounds.sdf \
  --top 50 \
  --output results.json

# Docking with custom settings
python scripts/docking.py \
  --pdb 1m17.pdb \
  --center_x 10.5 \
  --center_y 20.3 \
  --center_z 15.8 \
  --size_x 20 \
  --size_y 20 \
  --size_z 20

# Rescoring with GNINA
python scripts/rescore.py \
  --poses docked_poses.sdf \
  --model gnina \
  --output rescored.json

Requirements

# Core dependencies
pip install rdkit meeko

# Docking engines
# AutoDock Vina: http://vina.scripps.edu/
# SMINA: https://github.com/ccsb-scripps/AutoDock-Vina
# GNINA: https://github.com/gnina/gnina

# Optional
pip install prody pymol-open-source

Reference

Best Practices

  1. Prepare structures carefully: Clean PDB, remove duplicates
  2. Validate docking protocol: Re-dock co-crystal ligand
  3. Consider multiple poses: Top 3-5 poses per compound
  4. Use consensus scoring: Combine multiple scoring functions
  5. Check binding modes: Visual inspection of top poses
  6. Account for flexibility: Consider induced fit if needed

Common Pitfalls

PitfallSolution
Incorrect binding siteValidate with known inhibitor
Poor ligand preparationGenerate multiple conformations
Single scoring functionUse consensus scoring
Ignoring protein flexibilityUse ensemble docking
Overinterpreting scoresRemember scoring is approximate

Limitations

  • Scoring accuracy: ±2 kcal/mol typical error
  • Protein flexibility: Limited in standard docking
  • Solvent effects: Often implicit/explicit simplified
  • Binding kinetics: Not predicted (affinity only)
  • Synthetic accessibility: Not assessed

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon