Back to list
huifer

admet-prediction

by huifer

Drug Discovery Intelligence plugin for Claude Code. AI-powered target validation, competitive intelligence, literature analysis & clinical trials insights. Integrates Open Targets, ChEMBL, PubMed & 5+ databases.

2🍴 0📅 Jan 20, 2026

SKILL.md


name: admet-prediction description: | ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) prediction for drug candidates. Use for assessing drug-likeness, PK properties, and safety risks early in drug discovery.

Keywords: ADMET, PK, toxicity, drug-likeness, DILI, hERG, bioavailability category: DMPK tags: [admet, pk, toxicity, drug-likeness, safety] version: 1.0.0 author: Drug Discovery Team dependencies:

  • rdkit
  • admet-models

ADMET Prediction Skill

Predict ADMET properties to prioritize compounds for development.

Quick Start

/admet "CC1=CC=C(C=C1)CNC" --full
/pk-prediction --library compounds.sdf --threshold 0.7
/toxicity-screen CHEMBL210 --include hERG,DILI,Ames

What's Included

PropertyPredictionModel
AbsorptionCaco-2, HIA, PgpML/QSAR
DistributionVDss, PPB, BBBML/QSAR
MetabolismCYP inhibition, clearanceML/QSAR
ExcretionClearance, half-lifeML/QSAR
ToxicityhERG, DILI, Ames, mutagenicityML/QSAR

Output Structure

# ADMET Profile: CHEMBL210 (Osimertinib)

## Summary
| Property | Value | Status |
|----------|-------|--------|
| Drug-likeness | Pass | ✓ |
| Lipinski Ro5 | 0 violations | ✓ |
| VEBER | Pass | ✓ |
| PAINS | 0 alerts | ✓ |
| Brenk | 0 alerts | ✓ |

## Absorption
| Property | Prediction | Confidence |
|----------|------------|-------------|
| HIA | 98% | High |
| Caco-2 | 15.2 × 10⁻⁶ cm/s | High |
| Pgp substrate | Yes | Medium |
| F30% | 65% | Medium |

## Distribution
| Property | Prediction | Confidence |
|----------|------------|-------------|
| VDss | 5.2 L/kg | Medium |
| PPB | 95% | High |
| BBB | Yes | High |
| CNS MPO | 5.5 | Good |

## Metabolism
| Property | Prediction | Confidence |
|----------|------------|-------------|
| CYP3A4 substrate | Yes | High |
| CYP3A4 inhibitor | Yes | Medium |
| CYP2D6 inhibitor | No | High |
| CYP2C9 inhibitor | No | Medium |
| Clearance | 8.5 mL/min/kg | Low |

## Excretion
| Property | Prediction | Confidence |
|----------|------------|-------------|
| Renal clearance | 10% | Medium |
| Half-life | 48 hours | High |

## Toxicity
| Property | Prediction | Confidence |
|----------|------------|-------------|
| hERG inhibition | No | High |
| DILI | Concern | Medium |
| Ames mutagenicity | Negative | High |
| Carcinogenicity | Negative | Medium |
| Respiratory toxicity | No | Low |

## Recommendations
**Strengths**:
- Good oral bioavailability (65%)
- Brain penetration (BBB permeable)
- Low hERG risk

**Concerns**:
- DILI concern - monitor in preclinical studies
- CYP3A4 inhibition - potential DDIs

**Overall**: Good ADMET profile. Progress to in vivo PK.

Property Ranges

Drug-Likeness

RulePass Criteria
Lipinski Ro5≤ 1 violation
VeberRotB ≤ 10, PSA ≤ 140 Ų
EganLogP ≤ 5, PSA ≤ 131 Ų
MDDRMW ≤ 600, LogP ≤ 5

Absorption

PropertyGoodModeratePoor
HIA>80%40-80%<40%
Caco-2>101-10<1
F30%>70%30-70%<30%

Distribution

PropertyGoodModeratePoor
VDss0.3-5 L/kg<0.3 or >5Extreme
PPB<90%90-95%>95%
BBBLogBB > 0.3-0.3 to 0.3< -0.3

Toxicity Alerts

AlertAction
hERG inhibitionCardiotoxicity risk
DILI positiveHepatotoxicity risk
Ames positiveMutagenicity risk
PAINSAssay interference
Structural alertsInvestigate further

Running Scripts

# Full ADMET profile
python scripts/admet_predict.py --smiles "CC1=CC=C..." --full

# Batch prediction
python scripts/admet_predict.py --library compounds.sdf --output results.csv

# Specific properties
python scripts/admet_predict.py --smiles "..." --properties hERG,DILI,CYP

# Filter by criteria
python scripts/admet_filter.py --library compounds.sdf --rules lipinski,veber

Requirements

pip install rdkit

# Optional for advanced models
pip install deepchem admet-x

Reference

Best Practices

  1. Use multiple models: Consensus predictions more reliable
  2. Check confidence: Low confidence = experimental verification needed
  3. Consider chemistry: Novel structures less reliable
  4. Iterative design: Use predictions to guide synthesis
  5. Validate early: Confirm key predictions experimentally

Common Pitfalls

PitfallSolution
Over-reliance on predictionsExperimental validation required
Ignoring confidenceCheck model applicability domain
Single model onlyUse consensus of multiple models
Ignoring chemistryNovel scaffolds = uncertain predictions
Late-stage testingEarly ADMET screening saves time

Limitations

  • Models are approximate: Errors common
  • Novel chemistry: Less reliable for new scaffolds
  • In vitro-in vivo gap: Predictions don't always translate
  • Species differences: Human predictions based on animal data
  • Complex mechanisms: Some toxicity not predicted

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon