
oban-thinking
by georgeguimaraes
Claude Code plugin marketplace for Elixir development
SKILL.md
name: oban-thinking description: This skill should be used when the user asks to "add a background job", "process async", "schedule a task", "retry failed jobs", "add email sending", "run this later", "add a cron job", "unique jobs", "batch process", or mentions Oban, Oban Pro, workflows, job queues, cascades, grafting, recorded values, job args, or troubleshooting job failures.
Oban Thinking
Paradigm shifts for Oban job processing. These insights prevent common bugs and guide proper patterns.
Part 1: Oban (Non-Pro)
The Iron Law: JSON Serialization
JOB ARGS ARE JSON. ATOMS BECOME STRINGS.
This single fact causes most Oban debugging headaches.
# Creating - atom keys are fine
MyWorker.new(%{user_id: 123})
# Processing - must use string keys (JSON converted atoms to strings)
def perform(%Oban.Job{args: %{"user_id" => user_id}}) do
# ...
end
Error Handling: Let It Crash
Don't catch errors in Oban jobs. Let them bubble up to Oban for proper handling.
Why?
- Automatic logging: Oban logs the full error with stacktrace
- Automatic retries: Jobs retry with exponential backoff
- Visibility: Failed jobs appear in Oban Web dashboard
- Consistency: Error states are tracked in the database
Anti-Pattern
# Bad: Swallowing errors
def perform(%Oban.Job{} = job) do
case do_work(job.args) do
{:ok, result} -> {:ok, result}
{:error, reason} ->
Logger.error("Failed: #{reason}")
{:ok, :failed} # Silently marks as complete!
end
end
Correct Pattern
# Good: Let errors propagate
def perform(%Oban.Job{} = job) do
result = do_work!(job.args) # Raises on failure
{:ok, result}
end
# Or return error tuple - Oban treats as failure
def perform(%Oban.Job{} = job) do
case do_work(job.args) do
{:ok, result} -> {:ok, result}
{:error, reason} -> {:error, reason} # Oban will retry
end
end
When to Catch Errors
Only catch errors when you need custom retry logic or want to mark a job as permanently failed:
def perform(%Oban.Job{} = job) do
case external_api_call(job.args) do
{:ok, result} -> {:ok, result}
{:error, :not_found} -> {:cancel, :resource_not_found} # Don't retry
{:error, :rate_limited} -> {:snooze, 60} # Retry in 60 seconds
{:error, _} -> {:error, :will_retry} # Normal retry
end
end
Snoozing for Polling
Use {:snooze, seconds} for polling external state instead of manual retry logic:
def perform(%Oban.Job{} = job) do
if external_thing_finished?(job.args) do
{:ok, :done}
else
{:snooze, 5} # Check again in 5 seconds
end
end
Simple Job Chaining
For simple sequential chains (JobA → JobB → JobC), have each job enqueue the next:
def perform(%Oban.Job{} = job) do
result = do_work(job.args)
# Enqueue next job on success
NextWorker.new(%{data: result}) |> Oban.insert()
{:ok, result}
end
Don't reach for Oban Pro Workflows for linear chains.
Unique Jobs
Prevent duplicate jobs with the unique option:
use Oban.Worker,
queue: :default,
unique: [period: 60] # Only one job with same args per 60 seconds
# Or scope uniqueness to specific fields
unique: [period: 300, keys: [:user_id]]
Gotcha: Uniqueness is checked on insert, not execution. Two identical jobs inserted 61 seconds apart will both run.
High Throughput: Chunking
For millions of records, chunk work into batches rather than one job per item:
# Bad: One job per contact (millions of jobs = database strain)
Enum.each(contacts, &ContactWorker.new(%{id: &1.id}) |> Oban.insert())
# Good: Chunk into batches
contacts
|> Enum.chunk_every(100)
|> Enum.each(&BatchWorker.new(%{contact_ids: Enum.map(&1, fn c -> c.id end)}) |> Oban.insert())
Use bulk inserts without uniqueness constraints for maximum throughput.
Part 2: Oban Pro
Cascade Context: Erlang Term Serialization
Unlike regular job args, cascade context preserves atoms:
# Creating - atom keys
Workflow.put_context(%{score_run_id: id})
# Processing - atom keys still work!
def my_cascade(%{score_run_id: id}) do
# ...
end
# Dot notation works too
def later_step(context) do
context.score_run_id
context.previous_result
end
Serialization Summary
| Creating | Processing | |
|---|---|---|
| Regular jobs | atoms ok | strings only |
| Cascade context | atoms ok | atoms ok |
When to Use Workflows
Reserve Workflows for:
- Complex dependency graphs (not just linear chains)
- Fan-out/fan-in patterns
- When you need recorded values across steps
- Conditional branching based on runtime state
Don't use Workflows for simple A → B → C chains.
Workflow Composition with Graft
When you need a parent workflow to wait for a sub-workflow to complete before continuing, use add_graft instead of add_workflow.
Key Differences
| Method | Sub-workflow completes before deps run? | Output accessible? |
|---|---|---|
add_workflow | No - just inserts jobs | No |
add_graft | Yes - waits for all jobs | Yes, via recorded values |
Pattern: Composing Independent Concerns
Don't couple unrelated concerns (e.g., notifications) to domain-specific workflows (e.g., scoring). Instead, create a higher-level orchestrator:
# Bad: Notification logic buried in AggregateScores
defmodule AggregateScores do
def workflow(score_run_id) do
Workflow.new()
|> Workflow.add(:aggregate, AggregateJob.new(...))
|> Workflow.add(:send_notification, SendEmail.new(...), deps: :aggregate) # Wrong place!
end
end
# Good: Higher-level workflow composes scoring + notification
defmodule FullRunWithNotifications do
def workflow(site_url, opts) do
notification_opts = build_notification_opts(opts)
Workflow.new()
|> Workflow.put_context(%{notification_opts: notification_opts})
|> Workflow.add_graft(:scoring, &graft_full_run/1)
|> Workflow.add_cascade(:send_notification, &send_notification/1, deps: :scoring)
end
defp graft_full_run(context) do
# Sub-workflow doesn't know about notifications
FullRun.workflow(context.site_url, context.opts)
|> Workflow.apply_graft()
|> Oban.insert_all()
end
end
Recording Values for Dependent Steps
For a grafted workflow's output to be available to dependent steps, the final job must use recorded: true:
defmodule FinalJob do
use Oban.Pro.Worker, queue: :default, recorded: true
def perform(%Oban.Job{} = job) do
# Return value becomes available in context
{:ok, %{score_run_id: score_run_id, composite_score: score}}
end
end
Dynamic Workflow Appending
Add jobs to a running workflow with Workflow.append/2:
def perform(%Oban.Job{} = job) do
if needs_extra_step?(job.args) do
job
|> Workflow.append()
|> Workflow.add(:extra, ExtraWorker.new(%{}), deps: [:current_step])
|> Oban.insert_all()
end
{:ok, :done}
end
Caveat: Cannot override context or add dependencies to already-running jobs. For complex dynamic scenarios, check external state in the job itself.
Fan-Out/Fan-In with Batches
To run a final job after multiple paginated workflows complete, use Batch callbacks:
# Wrap workflows in a shared batch
batch_id = "import-#{import_id}"
pages
|> Enum.each(fn page ->
PageWorkflow.workflow(page)
|> Batch.from_workflow(batch_id: batch_id)
|> Oban.insert_all()
end)
# Add completion callback
Batch.new(batch_id: batch_id)
|> Batch.add_callback(:completed, CompletionWorker)
|> Oban.insert()
Tip: Include pagination workers in the batch to prevent premature completion.
Testing Workflows
Don't use inline testing mode - workflows need database interaction.
# Use run_workflow/1 for integration tests
assert %{completed: 3} =
Workflow.new()
|> Workflow.add(:a, WorkerA.new(%{}))
|> Workflow.add(:b, WorkerB.new(%{}), deps: [:a])
|> Workflow.add(:c, WorkerC.new(%{}), deps: [:b])
|> run_workflow()
For testing recorded values between workers, insert predecessor jobs with pre-filled metadata.
Red Flags - STOP and Reconsider
Non-Pro:
- Pattern matching on atom keys in
perform/1 - Catching all errors and returning
{:ok, _} - Wrapping job logic in try/rescue
- Creating one job per item when processing millions of records
Pro:
- Using
add_workflowwhen you need to wait for completion - Coupling notifications/emails to domain workflows
- Not using
recorded: truewhen you need output from grafted workflows - Using Workflows for simple linear job chains
- Testing workflows with inline mode
Any of these? Re-read the serialization rules.
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
