Back to list
georgeguimaraes

oban-thinking

by georgeguimaraes

Claude Code plugin marketplace for Elixir development

76🍴 4📅 Jan 23, 2026

SKILL.md


name: oban-thinking description: This skill should be used when the user asks to "add a background job", "process async", "schedule a task", "retry failed jobs", "add email sending", "run this later", "add a cron job", "unique jobs", "batch process", or mentions Oban, Oban Pro, workflows, job queues, cascades, grafting, recorded values, job args, or troubleshooting job failures.

Oban Thinking

Paradigm shifts for Oban job processing. These insights prevent common bugs and guide proper patterns.


Part 1: Oban (Non-Pro)

The Iron Law: JSON Serialization

JOB ARGS ARE JSON. ATOMS BECOME STRINGS.

This single fact causes most Oban debugging headaches.

# Creating - atom keys are fine
MyWorker.new(%{user_id: 123})

# Processing - must use string keys (JSON converted atoms to strings)
def perform(%Oban.Job{args: %{"user_id" => user_id}}) do
  # ...
end

Error Handling: Let It Crash

Don't catch errors in Oban jobs. Let them bubble up to Oban for proper handling.

Why?

  1. Automatic logging: Oban logs the full error with stacktrace
  2. Automatic retries: Jobs retry with exponential backoff
  3. Visibility: Failed jobs appear in Oban Web dashboard
  4. Consistency: Error states are tracked in the database

Anti-Pattern

# Bad: Swallowing errors
def perform(%Oban.Job{} = job) do
  case do_work(job.args) do
    {:ok, result} -> {:ok, result}
    {:error, reason} ->
      Logger.error("Failed: #{reason}")
      {:ok, :failed}  # Silently marks as complete!
  end
end

Correct Pattern

# Good: Let errors propagate
def perform(%Oban.Job{} = job) do
  result = do_work!(job.args)  # Raises on failure
  {:ok, result}
end

# Or return error tuple - Oban treats as failure
def perform(%Oban.Job{} = job) do
  case do_work(job.args) do
    {:ok, result} -> {:ok, result}
    {:error, reason} -> {:error, reason}  # Oban will retry
  end
end

When to Catch Errors

Only catch errors when you need custom retry logic or want to mark a job as permanently failed:

def perform(%Oban.Job{} = job) do
  case external_api_call(job.args) do
    {:ok, result} -> {:ok, result}
    {:error, :not_found} -> {:cancel, :resource_not_found}  # Don't retry
    {:error, :rate_limited} -> {:snooze, 60}  # Retry in 60 seconds
    {:error, _} -> {:error, :will_retry}  # Normal retry
  end
end

Snoozing for Polling

Use {:snooze, seconds} for polling external state instead of manual retry logic:

def perform(%Oban.Job{} = job) do
  if external_thing_finished?(job.args) do
    {:ok, :done}
  else
    {:snooze, 5}  # Check again in 5 seconds
  end
end

Simple Job Chaining

For simple sequential chains (JobA → JobB → JobC), have each job enqueue the next:

def perform(%Oban.Job{} = job) do
  result = do_work(job.args)
  # Enqueue next job on success
  NextWorker.new(%{data: result}) |> Oban.insert()
  {:ok, result}
end

Don't reach for Oban Pro Workflows for linear chains.

Unique Jobs

Prevent duplicate jobs with the unique option:

use Oban.Worker,
  queue: :default,
  unique: [period: 60]  # Only one job with same args per 60 seconds

# Or scope uniqueness to specific fields
unique: [period: 300, keys: [:user_id]]

Gotcha: Uniqueness is checked on insert, not execution. Two identical jobs inserted 61 seconds apart will both run.

High Throughput: Chunking

For millions of records, chunk work into batches rather than one job per item:

# Bad: One job per contact (millions of jobs = database strain)
Enum.each(contacts, &ContactWorker.new(%{id: &1.id}) |> Oban.insert())

# Good: Chunk into batches
contacts
|> Enum.chunk_every(100)
|> Enum.each(&BatchWorker.new(%{contact_ids: Enum.map(&1, fn c -> c.id end)}) |> Oban.insert())

Use bulk inserts without uniqueness constraints for maximum throughput.


Part 2: Oban Pro

Cascade Context: Erlang Term Serialization

Unlike regular job args, cascade context preserves atoms:

# Creating - atom keys
Workflow.put_context(%{score_run_id: id})

# Processing - atom keys still work!
def my_cascade(%{score_run_id: id}) do
  # ...
end

# Dot notation works too
def later_step(context) do
  context.score_run_id
  context.previous_result
end

Serialization Summary

CreatingProcessing
Regular jobsatoms okstrings only
Cascade contextatoms okatoms ok

When to Use Workflows

Reserve Workflows for:

  • Complex dependency graphs (not just linear chains)
  • Fan-out/fan-in patterns
  • When you need recorded values across steps
  • Conditional branching based on runtime state

Don't use Workflows for simple A → B → C chains.

Workflow Composition with Graft

When you need a parent workflow to wait for a sub-workflow to complete before continuing, use add_graft instead of add_workflow.

Key Differences

MethodSub-workflow completes before deps run?Output accessible?
add_workflowNo - just inserts jobsNo
add_graftYes - waits for all jobsYes, via recorded values

Pattern: Composing Independent Concerns

Don't couple unrelated concerns (e.g., notifications) to domain-specific workflows (e.g., scoring). Instead, create a higher-level orchestrator:

# Bad: Notification logic buried in AggregateScores
defmodule AggregateScores do
  def workflow(score_run_id) do
    Workflow.new()
    |> Workflow.add(:aggregate, AggregateJob.new(...))
    |> Workflow.add(:send_notification, SendEmail.new(...), deps: :aggregate)  # Wrong place!
  end
end

# Good: Higher-level workflow composes scoring + notification
defmodule FullRunWithNotifications do
  def workflow(site_url, opts) do
    notification_opts = build_notification_opts(opts)

    Workflow.new()
    |> Workflow.put_context(%{notification_opts: notification_opts})
    |> Workflow.add_graft(:scoring, &graft_full_run/1)
    |> Workflow.add_cascade(:send_notification, &send_notification/1, deps: :scoring)
  end

  defp graft_full_run(context) do
    # Sub-workflow doesn't know about notifications
    FullRun.workflow(context.site_url, context.opts)
    |> Workflow.apply_graft()
    |> Oban.insert_all()
  end
end

Recording Values for Dependent Steps

For a grafted workflow's output to be available to dependent steps, the final job must use recorded: true:

defmodule FinalJob do
  use Oban.Pro.Worker, queue: :default, recorded: true

  def perform(%Oban.Job{} = job) do
    # Return value becomes available in context
    {:ok, %{score_run_id: score_run_id, composite_score: score}}
  end
end

Dynamic Workflow Appending

Add jobs to a running workflow with Workflow.append/2:

def perform(%Oban.Job{} = job) do
  if needs_extra_step?(job.args) do
    job
    |> Workflow.append()
    |> Workflow.add(:extra, ExtraWorker.new(%{}), deps: [:current_step])
    |> Oban.insert_all()
  end
  {:ok, :done}
end

Caveat: Cannot override context or add dependencies to already-running jobs. For complex dynamic scenarios, check external state in the job itself.

Fan-Out/Fan-In with Batches

To run a final job after multiple paginated workflows complete, use Batch callbacks:

# Wrap workflows in a shared batch
batch_id = "import-#{import_id}"

pages
|> Enum.each(fn page ->
  PageWorkflow.workflow(page)
  |> Batch.from_workflow(batch_id: batch_id)
  |> Oban.insert_all()
end)

# Add completion callback
Batch.new(batch_id: batch_id)
|> Batch.add_callback(:completed, CompletionWorker)
|> Oban.insert()

Tip: Include pagination workers in the batch to prevent premature completion.

Testing Workflows

Don't use inline testing mode - workflows need database interaction.

# Use run_workflow/1 for integration tests
assert %{completed: 3} =
  Workflow.new()
  |> Workflow.add(:a, WorkerA.new(%{}))
  |> Workflow.add(:b, WorkerB.new(%{}), deps: [:a])
  |> Workflow.add(:c, WorkerC.new(%{}), deps: [:b])
  |> run_workflow()

For testing recorded values between workers, insert predecessor jobs with pre-filled metadata.


Red Flags - STOP and Reconsider

Non-Pro:

  • Pattern matching on atom keys in perform/1
  • Catching all errors and returning {:ok, _}
  • Wrapping job logic in try/rescue
  • Creating one job per item when processing millions of records

Pro:

  • Using add_workflow when you need to wait for completion
  • Coupling notifications/emails to domain workflows
  • Not using recorded: true when you need output from grafted workflows
  • Using Workflows for simple linear job chains
  • Testing workflows with inline mode

Any of these? Re-read the serialization rules.

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon