Back to list
Tideseed

eptr2-consumption-data

by Tideseed

EPIAS Transparency Platform API / EPİAŞ Şeffaflık Platformu API

17🍴 3📅 Jan 19, 2026

SKILL.md


name: eptr2-consumption-data description: Query Turkish electricity consumption and demand forecast data including real-time consumption, UECM (settlement consumption/Uzlaştırmaya Esas Çekiş Miktarı), and load plan forecasts. Use when asking about electricity demand, consumption patterns, load forecasting, or UECM data in Turkey. Triggers on: elektrik tüketimi, talep tahmini, yük planı, UEÇM, consumption forecast. allowed-tools: Read, Bash(python:*)

Turkish Electricity Consumption Data with eptr2

Overview

This skill helps you query electricity consumption and demand forecast data from Turkey's EPIAS Transparency Platform using the eptr2 Python library.

Quick Start

from eptr2 import EPTR2

# Initialize with environment variables
eptr = EPTR2(use_dotenv=True, recycle_tgt=True)

# Get real-time consumption
rt_cons = eptr.call("rt-cons", start_date="2024-07-29", end_date="2024-07-29")
print(rt_cons)

Available Consumption Endpoints

CallDescription (EN)Description (TR)
rt-consReal-time electricity consumptionGerçek Zamanlı Tüketim
uecmSettlement consumption (UECM)Uzlaştırmaya Esas Çekiş Miktarı
load-planDemand forecast (Load Plan)Yük Tahmini / Yük Planı
rt-consumptionSame as rt-consGerçek Zamanlı Tüketim

Composite Function for Consumption Analysis

The composite function combines load plan, UECM, and real-time consumption:

from eptr2.composite import get_hourly_consumption_and_forecast_data

df = get_hourly_consumption_and_forecast_data(
    eptr,
    start_date="2024-07-29",
    end_date="2024-07-29",
    verbose=True  # Print progress
)

Output Columns

ColumnDescription
dtDatetime in ISO format (+03:00 timezone)
load_planDemand forecast / load plan (MWh)
uecmSettlement consumption - UECM (MWh)
rt_consReal-time consumption (MWh)
consumptionBest available: UECM if available, otherwise real-time
contractContract symbol (optional)

Understanding Consumption Data Types

Load Plan (Yük Planı)

  • What: Day-ahead demand forecast published by TEIAS
  • When: Available before delivery day
  • Use: Planning and forecasting

Real-Time Consumption (Gerçek Zamanlı Tüketim)

  • What: Actual measured consumption in near real-time
  • When: Available ~15 minutes after each hour
  • Use: Monitoring, real-time decisions

UECM (Uzlaştırmaya Esas Çekiş Miktarı)

  • What: Official settlement consumption after meter reconciliation
  • When: Available after settlement period (~T+10 days)
  • Use: Settlement, billing, final analysis

Common Use Cases

1. Compare Forecast vs Actual

from eptr2.composite import get_hourly_consumption_and_forecast_data

df = get_hourly_consumption_and_forecast_data(
    eptr,
    start_date="2024-07-15",
    end_date="2024-07-15"
)

# Calculate forecast error
df['forecast_error'] = df['consumption'] - df['load_plan']
df['forecast_error_pct'] = (df['forecast_error'] / df['load_plan']) * 100

print(f"Average Forecast Error: {df['forecast_error'].mean():.2f} MWh")
print(f"MAPE: {df['forecast_error_pct'].abs().mean():.2f}%")

2. Daily Consumption Pattern

import pandas as pd

df = get_hourly_consumption_and_forecast_data(
    eptr,
    start_date="2024-07-15",
    end_date="2024-07-15"
)

df['dt'] = pd.to_datetime(df['dt'])
df['hour'] = df['dt'].dt.hour

# Peak consumption hour
peak_hour = df.loc[df['consumption'].idxmax()]
print(f"Peak Hour: {peak_hour['hour']}:00")
print(f"Peak Consumption: {peak_hour['consumption']:.2f} MWh")
df = get_hourly_consumption_and_forecast_data(
    eptr,
    start_date="2024-07-01",
    end_date="2024-07-31"
)

total_consumption = df['consumption'].sum()
print(f"Total July Consumption: {total_consumption:,.0f} MWh")
print(f"Daily Average: {total_consumption / 31:,.0f} MWh")

Date Format

Always use ISO format: YYYY-MM-DD (e.g., "2024-07-29")

Data Availability Notes

Data TypeAvailability
Load PlanPublished day-ahead (D-1 by 17:00)
Real-TimeAvailable with ~15 min delay
UECMAvailable after settlement (T+10 days typically)

Authentication

Set credentials in .env file:

EPTR_USERNAME=your_email@example.com
EPTR_PASSWORD=your_password

For More Details

Score

Total Score

65/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon