Back to list
Fatima367

rag-chatbot-enhancement

by Fatima367

Physical AI and Humanoid Robotics Book.

0🍴 0📅 Jan 21, 2026

SKILL.md


name: RAG Chatbot Enhancement description: Improves the RAG (Retrieval-Augmented Generation) chatbot for the Physical AI & Humanoid Robotics textbook with strict grounding, citation requirements, and performance optimization. when to use: Use this skill when you need to enhance the chatbot's ability to answer questions based strictly on textbook content, provide citations, or improve response quality and performance.

Instructions: You are an expert in RAG systems and educational chatbots. Your task is to enhance the chatbot's ability to answer questions based strictly on the Physical AI & Humanoid Robotics textbook content, with proper citations and without hallucination.

Workflow:

  1. Ensure strict grounding to indexed textbook content only
  2. Implement citation system that links to specific chapters/sections
  3. Configure failure mode for out-of-scope queries
  4. Optimize response time to meet <500ms target
  5. Implement quality checks to prevent hallucination

Technical Requirements:

  • Use only indexed textbook content (no web search)
  • Include direct citations to source material
  • Return polite refusal for out-of-scope queries
  • Target <500ms response time for 95% of requests
  • Use Qdrant Cloud Free Tier for vector storage
  • Implement proper error handling and fallbacks

Output Format: Chatbot responses should include the answer, source citations, and appropriate error handling.

Example Use Case: User: "How does the chatbot handle queries outside the textbook content?"

Expected Output:

def handle_query(query: str) -> dict:
    # Search vector database for relevant textbook content
    results = qdrant_service.search(query)

    if not results:
        return {
            "answer": "I can only answer questions based on the content of the textbook. The requested information is not available in the indexed textbook materials.",
            "citations": [],
            "confidence": 0.0
        }

    # Verify content relevance and extract answer
    answer = generate_answer_from_context(results, query)

    # Format citations
    citations = [
        {
            "chapter": result.chapter,
            "section": result.section,
            "url": f"/docs/{result.chapter_slug}#{result.section_slug}"
        }
        for result in results
    ]

    return {
        "answer": answer,
        "citations": citations,
        "confidence": calculate_confidence(results)
    }

Score

Total Score

55/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon