
indicator-series
by DaveSkender
Stock Indicators for .NET is a C# NuGet package that transforms raw equity, commodity, forex, or cryptocurrency financial market price quotes into technical indicators and trading insights. You'll need this essential data in the investment tools that you're building for algorithmic trading, technical analysis, machine learning, or visual charting.
SKILL.md
name: indicator-series description: Implement Series-style batch indicators with mathematical precision. Use for new StaticSeries implementations or optimization. Series results are the canonical reference—all other styles must match exactly. Focus on cross-cutting requirements and performance optimization decisions.
Series indicator development
File structure
- Implementation:
src/{category}/{Indicator}/{Indicator}.StaticSeries.cs - Test:
tests/indicators/{category}/{Indicator}/{Indicator}.StaticSeries.Tests.cs - Catalog:
src/{category}/{Indicator}/{Indicator}.Catalog.cs - Categories: a-d, e-k, m-r, s-z (alphabetical)
Performance optimization
Array allocation pattern (recommended for new implementations):
TResult[] results = new TResult[length];
// ... assign results[i] = new TResult(...);
return new List<TResult>(results); // NOT results.ToList()
When to use: Indicators with predictable result counts show ~2x improvement (Issue #1259)
When NOT to use: Benchmark first. Some indicators (ADL) remain faster with List.Add()
Conversion strategy:
- Benchmark existing List-based implementation
- Convert to array pattern
- Benchmark again
- Revert if no improvement or regression
Required implementation
Beyond the .StaticSeries.cs file, ensure:
- Catalog registration: Create
src/**/{IndicatorName}.Catalog.csand register insrc/_common/Catalog/Catalog.Listings.cs - Unit tests: Create
tests/indicators/**/{IndicatorName}.StaticSeries.Tests.cs- Inherit from
StaticSeriesTestBase - Include
[TestCategory("Regression")]for baseline validation - Verify against manually calculated reference values
- Inherit from
- Performance benchmark: Add to
tools/performance/SeriesIndicators.cs - Public documentation: Update
docs/_indicators/{IndicatorName}.md
Precision testing patterns
- Store reference data separately: Create
{Indicator}.Data.csfiles with arrays of expected values at maximum precision - Excel manual calculations: Export at highest precision available (~14 decimal places for
default.csvvalues ~200) - Baseline regression validation: Compare full dataset against reference arrays using Money10-Money12 precision
- Spot check assertions: Use Money4 for individual sample value readability (sanity checks, not proofs)
- Longer datasets: May require lower precision (e.g., Money10 for 15k quotes) due to accumulated floating-point error
- Document degradation: When precision must be lowered, explain why in test comments
Examples
- Simple single-value:
src/s-z/Sma/Sma.StaticSeries.cs - Exponential smoothing:
src/e-k/Ema/Ema.StaticSeries.cs - Complex multi-stage:
src/a-d/Adx/Adx.StaticSeries.cs - Multi-line results:
src/a-d/Alligator/Alligator.StaticSeries.cs
See references/decision-tree.md for result interface selection guidance.
Constitutional constraints
- Series is truth: All other styles (BufferList, StreamHub) MUST match Series results exactly
- Verify against authoritative sources: NEVER trust other libraries—use reference publications only
- Algebraic stability: Prefer boundary detection over clamping
- Real-world testing: Synthetic boundary data may miss precision edge cases
- Fix formulas, not symptoms: When all styles fail identically, fix the core algorithm
NEVER modify formulas without verification against authoritative mathematical references. See src/AGENTS.md for formula protection rules.
Last updated: December 31, 2025
Score
Total Score
Based on repository quality metrics
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 1000以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
Reviews
Reviews coming soon
