Back to list
DanielPodolsky

performance-fundamentals

by DanielPodolsky

AI-mentored development for junior engineers. Claude becomes your mentor, not your coder — guiding with questions, reviewing via 6 Gates, but YOU write every line. Less dependency, more ownership.

1🍴 0📅 Jan 25, 2026

SKILL.md


name: performance-fundamentals description: | TRIGGERS: "is this performant?", "will this scale?", "performance check", "too slow", "fetching data", "loading list", "rendering many", "large dataset", "lots of items", "mapping over", "looping through", "pagination", "infinite scroll", "caching", N+1 queries, re-renders, memory leaks, Big O, optimization, caching, lazy loading, pagination. USE WHEN: Junior is BUILDING features with loops, data fetching, lists, or resource-intensive operations. PROVIDES: N+1 detection, complexity analysis, caching strategies, scalability assessment. PROACTIVE: Triggers when junior mentions building features that could have performance implications.

Performance Fundamentals Review

"Premature optimization is the root of all evil, but mature ignorance is worse."

When to Apply

Activate this skill when reviewing:

  • Database queries (especially in loops)
  • React/Vue render logic
  • API response payloads
  • Data transformations
  • File operations
  • Caching decisions

Review Checklist

Database Performance

  • No N+1 queries: Are related records fetched in bulk, not loops?
  • Indexes: Are frequently queried fields indexed?
  • Pagination: Do list endpoints paginate results?
  • Select only needed fields: Are we fetching entire records unnecessarily?

Frontend Performance

  • Memoization: Are expensive computations cached?
  • Re-render prevention: Will state changes cause unnecessary re-renders?
  • Bundle size: Are heavy libraries lazy-loaded?
  • Image optimization: Are images properly sized and formatted?

API Performance

  • Response size: Is the payload minimal?
  • Compression: Is gzip/brotli enabled?
  • Caching headers: Are cacheable responses marked?
  • Async processing: Are slow operations queued?

Memory & Resources

  • Cleanup: Are subscriptions/timers cleaned up?
  • Memory leaks: Are event listeners removed?
  • Connection pooling: Are DB connections reused?

Common Mistakes (Anti-Patterns)

1. The N+1 Query Problem

❌ const users = await User.findAll();
   for (const user of users) {
     user.posts = await Post.findByUserId(user.id); // N queries!
   }

✅ const users = await User.findAll({
     include: [{ model: Post }] // 1 query with JOIN
   });

2. Unnecessary Re-renders

❌ function Parent() {
     const handleClick = () => {}; // New function every render
     return <Child onClick={handleClick} />;
   }

✅ function Parent() {
     const handleClick = useCallback(() => {}, []);
     return <Child onClick={handleClick} />;
   }

3. Computing in Render

❌ function UserList({ users }) {
     // Runs on every render
     const sorted = users.sort((a, b) => a.name.localeCompare(b.name));
     return <ul>{sorted.map(...)}</ul>;
   }

✅ function UserList({ users }) {
     const sorted = useMemo(
       () => [...users].sort((a, b) => a.name.localeCompare(b.name)),
       [users]
     );
     return <ul>{sorted.map(...)}</ul>;
   }

4. Fetching Everything

❌ GET /api/users → returns 10,000 users with all fields

✅ GET /api/users?page=1&limit=20&fields=id,name,email

5. Missing Cleanup

❌ useEffect(() => {
     const interval = setInterval(fetchData, 5000);
     // No cleanup! Runs forever.
   }, []);

✅ useEffect(() => {
     const interval = setInterval(fetchData, 5000);
     return () => clearInterval(interval);
   }, []);

Socratic Questions

Ask the junior these questions instead of giving answers:

  1. Scale: "What happens when there are 10,000 items? 1,000,000?"
  2. Queries: "How many database queries does this operation make?"
  3. Re-renders: "When this state changes, what components re-render?"
  4. Memory: "Is anything holding a reference after it's no longer needed?"
  5. Payload: "Does the client need ALL of this data?"

Big O Quick Reference

PatternComplexityExampleAt 10,000 items
Direct lookupO(1)map.get(key)1 op
Single loopO(n)array.find()10,000 ops
Nested loopsO(n²)for i { for j }100,000,000 ops
SortO(n log n)array.sort()~130,000 ops

Performance Targets

MetricTargetMeasure With
Time to First Byte (TTFB)< 600msDevTools Network
Largest Contentful Paint (LCP)< 2.5sLighthouse
First Input Delay (FID)< 100msLighthouse
Cumulative Layout Shift (CLS)< 0.1Lighthouse
API Response Time< 200ms (p95)Server metrics

Red Flags to Call Out

FlagQuestion to Ask
Query inside a loop"Can we batch this into one query?"
No pagination"What if there are 100,000 records?"
SELECT *"Do we need all these fields?"
Large JSON in localStorage"Will this slow down page load?"
Inline function in JSX"Does this create a new function every render?"
setInterval without cleanup"What clears this when the component unmounts?"
Synchronous file operations"Should this be async?"
No loading states"What does the user see while waiting?"

Quick Wins

  1. Add indexes to frequently queried DB columns
  2. Paginate all list endpoints
  3. Lazy load below-the-fold content
  4. Compress API responses
  5. Cache expensive computations with useMemo
  6. Debounce search inputs
  7. Virtualize long lists (react-window)

Score

Total Score

75/100

Based on repository quality metrics

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

Reviews

💬

Reviews coming soon