
recall
by yonatangross
The Complete AI Development Toolkit for Claude Code — 159 skills, 34 agents, 20 commands, 144 hooks. Production-ready patterns for FastAPI, React 19, LangGraph, security, and testing.
SKILL.md
name: recall description: Search and retrieve decisions and patterns from knowledge graph. Use when recalling patterns, retrieving memories, finding past decisions. context: inherit version: 2.1.0 author: OrchestKit tags: [memory, search, decisions, patterns, graph-memory, mem0, unified-memory] user-invocable: true
Recall - Search Knowledge Graph
Search past decisions and patterns from the knowledge graph with optional cloud semantic search enhancement.
Graph-First Architecture (v2.1)
The recall skill uses graph memory as PRIMARY search:
- Knowledge Graph (PRIMARY): Entity and relationship search via
mcp__memory__search_nodes- FREE, zero-config, always works - Semantic Memory (mem0): Optional cloud search via
search-memories.pyscript - requires MEM0_API_KEY, use with--mem0flag
Benefits of Graph-First:
- Zero configuration required - works out of the box
- Explicit entity and relationship queries
- Fast local search with no network latency
- No cloud dependency for basic operation
- Optional cloud enhancement with
--mem0flag for semantic similarity search
Overview
- Finding past architectural decisions
- Searching for recorded patterns
- Looking up project context
- Retrieving stored knowledge
- Querying cross-project best practices
- Finding entity relationships
Usage
/recall <search query>
/recall --category <category> <search query>
/recall --limit <number> <search query>
# Cloud-enhanced search (v2.1.0+)
/recall --mem0 <query> # Search BOTH graph AND mem0 cloud
/recall --mem0 --limit 20 <query> # More results from both systems
# Scoped search
/recall --agent <agent-id> <query> # Filter by agent scope
/recall --global <query> # Search cross-project best practices
Advanced Flags
| Flag | Behavior |
|---|---|
| (default) | Search graph only |
--mem0 | Search BOTH graph and mem0 cloud |
--limit <n> | Max results (default: 10) |
--category <cat> | Filter by category |
--agent <agent-id> | Filter results to a specific agent's memories |
--global | Search cross-project best practices |
Context-Aware Result Limits (CC 2.1.6)
Result limits automatically adjust based on context_window.used_percentage:
| Context Usage | Default Limit | Behavior |
|---|---|---|
| 0-70% | 10 results | Full results with details |
| 70-85% | 5 results | Reduced, summarized results |
| >85% | 3 results | Minimal with "more available" hint |
Workflow
1. Parse Input
Check for --category <category> flag
Check for --limit <number> flag
Check for --mem0 flag → search_mem0: true
Check for --agent <agent-id> flag → filter by agent_id
Check for --global flag → search global scope
Extract the search query
2. Search Knowledge Graph (PRIMARY)
Use mcp__memory__search_nodes:
{
"query": "user's search query"
}
Knowledge Graph Search:
- Searches entity names, types, and observations
- Returns entities with their relationships
- Finds patterns like "X uses Y", "X recommends Y"
Entity Types to Look For:
Technology: Tools, frameworks, databases (pgvector, PostgreSQL, React)Agent: OrchestKit agents (database-engineer, backend-system-architect)Pattern: Named patterns (cursor-pagination, connection-pooling)Decision: Architectural decisionsProject: Project-specific contextAntiPattern: Failed patterns
3. Search mem0 (OPTIONAL - only if --mem0 flag)
Skip if --mem0 flag NOT set or MEM0_API_KEY not configured.
Execute the script IN PARALLEL with step 2:
!bash skills/mem0-memory/scripts/crud/search-memories.py \
--query "user's search query" \
--user-id "orchestkit-{project-name}-decisions" \
--limit 10 \
--enable-graph
User ID Selection:
- Default:
orchestkit-{project-name}-decisions - With
--global:orchestkit-global-best-practices
Filter Construction:
- Always include
user_idfilter - With
--category: Add{ "metadata.category": "{category}" }to AND array - With
--agent: Add{ "agent_id": "ork:{agent-id}" }to AND array
4. Merge and Deduplicate Results (if --mem0)
Only when both systems return results:
- Collect results from both systems
- For each mem0 memory, check if its text matches a graph entity observation
- If matched, mark as
[CROSS-REF]and merge metadata - Remove pure duplicates (same content from both systems)
- Sort: graph results first, then mem0 results, cross-refs highlighted
5. Format Results
Graph-Only Results (default):
🔍 Found {count} results matching "{query}":
[GRAPH] {entity_name} ({entity_type})
→ {relation1} → {target1}
→ {relation2} → {target2}
Observations: {observation1}, {observation2}
[GRAPH] {entity_name2} ({entity_type2})
Observations: {observation}
With --mem0 (combined results):
🔍 Found {count} results matching "{query}":
[GRAPH] {entity_name} ({entity_type})
→ {relation} → {target}
Observations: {observation}
[GRAPH] {entity_name2} ({entity_type2})
Observations: {observation}
[MEM0] [{time ago}] ({category}) {memory text}
[MEM0] [{time ago}] ({category}) {memory text}
[CROSS-REF] {memory text} (linked to {N} graph entities)
📊 Linked entities: {entity1}, {entity2}
With --mem0 when MEM0_API_KEY not configured:
🔍 Found {count} results matching "{query}":
[GRAPH] {entity_name} ({entity_type})
→ {relation} → {target}
Observations: {observation}
⚠️ mem0 search requested but MEM0_API_KEY not configured (graph-only results)
High Context Pressure (>85%):
🔍 Found 12 matches (showing 3 due to context pressure at 87%)
[GRAPH] pgvector (Technology)
→ USED_FOR → RAG
[GRAPH] cursor-pagination (Pattern)
[GRAPH] database-engineer (Agent)
→ RECOMMENDS → pgvector
More results available. Use /recall --limit 10 to override.
6. Handle No Results
🔍 No results found matching "{query}"
Searched:
• Knowledge graph: 0 entities
Try:
• Broader search terms
• /remember to store new decisions
• --global flag to search cross-project best practices
• --mem0 flag to include cloud semantic search
Time Formatting
| Duration | Display |
|---|---|
| < 1 day | "today" |
| 1 day | "yesterday" |
| 2-7 days | "X days ago" |
| 1-4 weeks | "X weeks ago" |
| > 4 weeks | "X months ago" |
Examples
Basic Graph Search
Input: /recall database
Output:
🔍 Found 3 results matching "database":
[GRAPH] PostgreSQL (Technology)
→ CHOSEN_FOR → ACID-requirements
→ USED_WITH → pgvector
Observations: Chosen for ACID requirements and team familiarity
[GRAPH] database-engineer (Agent)
→ RECOMMENDS → pgvector
→ RECOMMENDS → cursor-pagination
Observations: Uses pgvector for RAG applications
[GRAPH] cursor-pagination (Pattern)
Observations: Scales well for large datasets
Category Filter
Input: /recall --category architecture API
Output:
🔍 Found 2 results matching "API" (category: architecture):
[GRAPH] api-gateway (Architecture)
→ IMPLEMENTS → rate-limiting
→ USES → JWT-authentication
Observations: Central entry point for all services
[GRAPH] REST-API (Pattern)
→ FOLLOWS → OpenAPI-spec
Observations: Standard for external-facing APIs
Cloud-Enhanced Search
Input: /recall --mem0 database
Output:
🔍 Found 5 results matching "database":
[GRAPH] PostgreSQL (Technology)
→ CHOSEN_FOR → ACID-requirements
Observations: Chosen for ACID requirements
[GRAPH] database-engineer (Agent)
→ RECOMMENDS → pgvector
Observations: Uses pgvector for RAG
[MEM0] [2 days ago] (decision) PostgreSQL chosen for ACID requirements and team familiarity
[MEM0] [1 week ago] (pattern) Database connection pooling with pool_size=10, max_overflow=20
[CROSS-REF] [3 days ago] pgvector for RAG applications (linked to 2 entities)
📊 Linked: database-engineer, pgvector
Agent-Scoped Search
Input: /recall --agent backend-system-architect "API patterns"
Output:
🔍 Found 2 results from backend-system-architect:
[GRAPH] backend-system-architect (Agent)
→ RECOMMENDS → cursor-pagination
→ RECOMMENDS → repository-pattern
Observations: Use versioned endpoints: /api/v1/, /api/v2/
[GRAPH] repository-pattern (Pattern)
Observations: Separate controllers, services, and repositories
Cross-Project Search
Input: /recall --global --category pagination
Output:
🔍 Found 3 GLOBAL best practices (pagination):
[GRAPH] cursor-pagination (Pattern)
→ SCALES_FOR → large-datasets
→ PREFERRED_OVER → offset-pagination
Observations: From project: ecommerce, analytics, cms
[GRAPH] keyset-pagination (Pattern)
→ USED_FOR → real-time-feeds
Observations: From project: analytics
[GRAPH] offset-pagination (AntiPattern)
Observations: Caused timeouts on 1M+ rows
Relationship Query
Input: /recall what does database-engineer recommend
Output:
🔍 Found relationships for database-engineer:
[GRAPH] database-engineer (Agent)
→ RECOMMENDS → pgvector
→ RECOMMENDS → cursor-pagination
→ RECOMMENDS → connection-pooling
→ USES → PostgreSQL
Observations: Specialist in database architecture
Related Skills
- remember: Store information for later recall
Error Handling
- If knowledge graph unavailable, show configuration instructions
- If --mem0 requested without MEM0_API_KEY, proceed with graph-only and notify user
- If search query empty, show recent entities instead
- If no results, suggest alternatives
- If --agent used without agent-id, show available agents
- If --global returns no results, suggest storing with /remember --global
- If --mem0 returns partial results (mem0 failed), show graph results with degradation notice
スコア
総合スコア
リポジトリの品質指標に基づく評価
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
レビュー
レビュー機能は近日公開予定です
