← スキル一覧に戻る

alternative-agent-frameworks
by yonatangross
The Complete AI Development Toolkit for Claude Code — 159 skills, 34 agents, 20 commands, 144 hooks. Production-ready patterns for FastAPI, React 19, LangGraph, security, and testing.
⭐ 29🍴 4📅 2026年1月23日
SKILL.md
name: alternative-agent-frameworks description: Multi-agent frameworks beyond LangGraph. CrewAI crews, Microsoft Agent Framework, OpenAI Agents SDK. Use when building multi-agent systems, choosing frameworks. version: 1.0.0 tags: [crewai, autogen, openai-agents, microsoft, multi-agent, orchestration, 2026] context: fork agent: workflow-architect author: OrchestKit user-invocable: false
Alternative Agent Frameworks
Multi-agent frameworks beyond LangGraph for specialized use cases.
Framework Comparison
| Framework | Best For | Key Features | 2026 Status |
|---|---|---|---|
| LangGraph 1.0.6 | Complex stateful workflows | Persistence, streaming, human-in-loop | Production |
| CrewAI 0.203.x | Role-based collaboration | Hierarchical crews, a2a, HITL for Flows | Production |
| OpenAI Agents SDK 0.6.x | OpenAI ecosystem | Handoffs, guardrails, GPT-5.1, RealtimeRunner | Production |
| MS Agent Framework | Enterprise | AutoGen+SK merger, A2A, compliance | Public Preview |
| AG2 | Open-source, flexible | Community fork of AutoGen | Active |
CrewAI Hierarchical Crew (0.203.x)
from crewai import Agent, Crew, Task, Process
from crewai.flow.flow import Flow, listen, start
# Manager coordinates the team
manager = Agent(
role="Project Manager",
goal="Coordinate team efforts and ensure project success",
backstory="Experienced project manager skilled at delegation",
allow_delegation=True,
memory=True,
verbose=True
)
# Specialist agents
researcher = Agent(
role="Researcher",
goal="Provide accurate research and analysis",
backstory="Expert researcher with deep analytical skills",
allow_delegation=False,
verbose=True
)
writer = Agent(
role="Writer",
goal="Create compelling content",
backstory="Skilled writer who creates engaging content",
allow_delegation=False,
verbose=True
)
# Manager-led task
project_task = Task(
description="Create a comprehensive market analysis report",
expected_output="Executive summary, analysis, recommendations",
agent=manager
)
# Hierarchical crew
crew = Crew(
agents=[manager, researcher, writer],
tasks=[project_task],
process=Process.hierarchical,
manager_llm="gpt-4o",
memory=True,
verbose=True
)
result = crew.kickoff()
OpenAI Agents SDK Multi-Agent (0.6.x)
from agents import Agent, Runner, handoff, tool
from agents.extensions.handoff_prompt import RECOMMENDED_PROMPT_PREFIX
# Note: v0.6.6 adds GPT-5.1 support, shell/apply_patch tools, RealtimeRunner
# Define specialized agents
researcher_agent = Agent(
name="researcher",
instructions=f"""{RECOMMENDED_PROMPT_PREFIX}
You are a research specialist. Gather information and facts.
When research is complete, hand off to the writer.""",
model="gpt-4o"
)
writer_agent = Agent(
name="writer",
instructions=f"""{RECOMMENDED_PROMPT_PREFIX}
You are a content writer. Create compelling content from research.
When done, hand off to orchestrator for final review.""",
model="gpt-4o"
)
# Orchestrator with handoffs
orchestrator = Agent(
name="orchestrator",
instructions=f"""{RECOMMENDED_PROMPT_PREFIX}
You coordinate research and writing tasks.
Hand off to researcher for information gathering.
Hand off to writer for content creation.""",
model="gpt-4o",
handoffs=[
handoff(agent=researcher_agent),
handoff(agent=writer_agent)
]
)
# Run with handoffs
async def run_workflow(task: str):
runner = Runner()
result = await runner.run(orchestrator, task)
return result.final_output
Microsoft Agent Framework (2026)
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_agentchat.conditions import TextMentionTermination
from autogen_ext.models.openai import OpenAIChatCompletionClient
# Create model client
model_client = OpenAIChatCompletionClient(model="gpt-4o")
# Define agents
planner = AssistantAgent(
name="planner",
description="Plans complex tasks and breaks them into steps",
model_client=model_client,
system_message="You are a planning expert. Break tasks into actionable steps."
)
executor = AssistantAgent(
name="executor",
description="Executes planned tasks",
model_client=model_client,
system_message="You execute tasks according to the plan."
)
reviewer = AssistantAgent(
name="reviewer",
description="Reviews work and provides feedback",
model_client=model_client,
system_message="You review work and ensure quality standards."
)
# Create team with termination condition
termination = TextMentionTermination("APPROVED")
team = RoundRobinGroupChat(
participants=[planner, executor, reviewer],
termination_condition=termination
)
# Run team
async def run_team(task: str):
result = await team.run(task=task)
return result.messages[-1].content
Decision Framework
| Criteria | Choose |
|---|---|
| Need persistence & checkpoints | LangGraph |
| Role-based collaboration | CrewAI |
| OpenAI-native ecosystem | OpenAI Agents SDK |
| Enterprise compliance | Microsoft Agent Framework |
| Open-source flexibility | AG2 |
| Complex state machines | LangGraph |
| Quick prototyping | CrewAI or OpenAI SDK |
| Production observability | LangGraph + Langfuse |
Key Decisions
| Decision | Recommendation |
|---|---|
| Framework | Match to team expertise + use case |
| Agent count | 3-8 per workflow |
| Communication | Handoffs (OpenAI) or shared state (CrewAI) |
| Memory | Built-in for CrewAI, custom for others |
Common Mistakes
- Mixing frameworks in one project (complexity explosion)
- Ignoring framework maturity (beta vs production)
- No fallback strategy (framework lock-in)
- Overcomplicating simple tasks (use single agent)
Related Skills
langgraph-supervisor- LangGraph supervisor patternmulti-agent-orchestration- Framework-agnostic patternsagent-loops- Single agent patterns
Capability Details
crewai-patterns
Keywords: crewai, crew, hierarchical, delegation, role-based Solves:
- Build role-based agent teams
- Implement hierarchical coordination
- Enable agent delegation
openai-agents-sdk
Keywords: openai, agents sdk, handoffs, guardrails, tracing Solves:
- Use OpenAI Agents SDK patterns
- Implement handoff workflows
- Add guardrails and tracing
microsoft-agent-framework
Keywords: microsoft, autogen, semantic kernel, a2a, enterprise Solves:
- Build enterprise agent systems
- Use AutoGen/SK merged framework
- Implement A2A protocol
framework-selection
Keywords: choose, compare, framework, decision, which Solves:
- Select appropriate framework
- Compare framework capabilities
- Match framework to requirements
スコア
総合スコア
75/100
リポジトリの品質指標に基づく評価
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
✓説明文
100文字以上の説明がある
+10
○人気
GitHub Stars 100以上
0/15
✓最近の活動
1ヶ月以内に更新
+10
○フォーク
10回以上フォークされている
0/5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
レビュー
💬
レビュー機能は近日公開予定です
