スキル一覧に戻る
pymc-labs

running-placebo-analysis

by pymc-labs

running-placebo-analysisは、other分野における実用的なスキルです。複雑な課題への対応力を強化し、業務効率と成果の質を改善します。

1,093🍴 91📅 2026年1月21日
GitHubで見るManusで実行

SKILL.md


name: running-placebo-analysis description: Performs placebo-in-time sensitivity analysis to validate causal claims. Use when checking model robustness, verifying lack of pre-intervention effects, or ensuring observed effects are not spurious.

Running Placebo Analysis

Executes placebo-in-time sensitivity analysis to validate causal experiments.

Workflow

  1. Define Experiment Factory: Create a function that returns a fitted CausalPy experiment (e.g., ITS, DiD, SC) given a dataset and time boundaries.
  2. Configure Analysis: Initialize PlaceboAnalysis with the factory, dataset, intervention dates, and number of folds (cuts).
  3. Run Analysis: Execute .run() to fit models on pre-intervention data folds.
  4. Evaluate Results: Compare placebo effects (which should be null) to the actual intervention effect. Use histograms and hierarchical models to quantify the "status quo" distribution.

Key Concepts

  • Placebo-in-time: Simulating an intervention at a time when none occurred to check if the model falsely detects an effect.
  • Fold: A slice of pre-intervention data used to test a placebo period.
  • Factory Pattern: Decouples the placebo logic from the specific CausalPy experiment type.

References

スコア

総合スコア

80/100

リポジトリの品質指標に基づく評価

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

0/5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

レビュー

💬

レビュー機能は近日公開予定です