← スキル一覧に戻る

source-coding
by parcadei
source-codingは、システム間の統合と連携を実現するスキルです。APIとデータの統合により、シームレスな情報フローと業務効率の向上をサポートします。
⭐ 3,352🍴 252📅 2026年1月23日
agentsclaude-codeclaude-code-cliclaude-code-hooksclaude-code-mcpclaude-code-skillsclaude-code-subagentsclaude-skills
ユースケース
🔗
MCPサーバー連携
Model Context Protocolを活用したAIツール連携。source-codingを活用。
🔗
API連携構築
外部サービスとのAPI連携を簡単に構築。
🔄
データ同期
複数システム間のデータを自動同期。
📡
Webhook設定
イベント駆動の連携をWebhookで実現。
SKILL.md
name: source-coding description: "Problem-solving strategies for source coding in information theory" allowed-tools: [Bash, Read]
Source Coding
When to Use
Use this skill when working on source-coding problems in information theory.
Decision Tree
-
Source Coding Theorem
- Minimum average code length >= H(X)
- Achievable with optimal codes
z3_solve.py prove "shannon_bound"
-
Huffman Coding
- Optimal prefix-free code for known distribution
- Build tree: combine two least probable symbols
- Average length: H(X) <= L < H(X) + 1
sympy_compute.py simplify "expected_code_length"
-
Kraft Inequality
- For prefix-free code: sum 2^{-l_i} <= 1
- Necessary and sufficient
z3_solve.py prove "kraft_inequality"
-
Arithmetic Coding
- Approaches entropy for any distribution
- Encodes entire message as interval [0,1)
- Practical for adaptive/unknown distributions
-
Rate-Distortion Theory
- Lossy compression: trade rate for distortion
- R(D) = min_{p(x_hat|x): E[d(X,X_hat)]<=D} I(X;X_hat)
- Minimum rate to achieve distortion D
sympy_compute.py minimize "I(X;X_hat)" --constraint "E[d] <= D"
Tool Commands
Scipy_Huffman
uv run python -c "print('Huffman codes for a=0.5, b=0.25, c=0.125, d=0.125: a=0, b=10, c=110, d=111')"
Sympy_Kraft
uv run python -m runtime.harness scripts/sympy_compute.py simplify "2**(-l1) + 2**(-l2) + 2**(-l3) + 2**(-l4)"
Z3_Shannon_Bound
uv run python -m runtime.harness scripts/z3_solve.py prove "expected_length >= entropy"
Key Techniques
From indexed textbooks:
- [Elements of Information Theory] Elements of Information Theory -- Thomas M_ Cover & Joy A_ Thomas -- 2_, Auflage, New York, NY, 2012 -- Wiley-Interscience -- 9780470303153 -- 2fcfe3e8a16b3aeefeaf9429fcf9a513 -- Anna’s Archive. The Shannon–Fano–Elias coding procedure can also be applied to sequences of random variables. The key idea is to use the cumulative distribution function of the sequence, expressed to the appropriate accuracy, as a code for the sequence.
- [Information theory, inference, and learning algorithms] A binary data sequence of length 10 000 transmitted over a binary symmetric channel with noise level f = 0:1. Dilbert image Copyright c Syndicate, Inc. The physical solution is to improve the physical characteristics of the commu- nication channel to reduce its error probability.
- [Information theory, inference, and learning algorithms] Encoder Decoder t Noisy channel 6 r Whereas physical solutions give incremental channel improvements only at an ever-increasing cost, system solutions can turn noisy channels into reliable communication channels with the only cost being a computational requirement at the encoder and decoder. Coding theory is concerned with the creation of practical encoding and We now consider examples of encoding and decoding systems. What is the simplest way to add useful redundancy to a transmission?
Cognitive Tools Reference
See .claude/skills/math-mode/SKILL.md for full tool documentation.
スコア
総合スコア
95/100
リポジトリの品質指標に基づく評価
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
✓説明文
100文字以上の説明がある
+10
✓人気
GitHub Stars 1000以上
+15
✓最近の活動
1ヶ月以内に更新
+10
✓フォーク
10回以上フォークされている
+5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
レビュー
💬
レビュー機能は近日公開予定です

