← スキル一覧に戻る

gradient-methods
by parcadei
gradient-methodsは、システム間の統合と連携を実現するスキルです。APIとデータの統合により、シームレスな情報フローと業務効率の向上をサポートします。
⭐ 3,352🍴 252📅 2026年1月23日
agentsclaude-codeclaude-code-cliclaude-code-hooksclaude-code-mcpclaude-code-skillsclaude-code-subagentsclaude-skills
ユースケース
🔗
MCPサーバー連携
Model Context Protocolを活用したAIツール連携。gradient-methodsを活用。
🔗
API連携構築
外部サービスとのAPI連携を簡単に構築。
🔄
データ同期
複数システム間のデータを自動同期。
📡
Webhook設定
イベント駆動の連携をWebhookで実現。
SKILL.md
name: gradient-methods description: "Problem-solving strategies for gradient methods in optimization" allowed-tools: [Bash, Read]
Gradient Methods
When to Use
Use this skill when working on gradient-methods problems in optimization.
Decision Tree
-
Basic Gradient Descent
- Update: x_{k+1} = x_k - alpha * grad f(x_k)
- Step size alpha: fixed, diminishing, or line search
- Convergence: O(1/k) for convex, linear for strongly convex
-
Step Size Selection
Method Approach Fixed alpha constant (requires tuning) Backtracking Armijo condition: f(x - alphagrad) <= f(x) - calpha* Exact line search minimize f(x - alpha*grad) over alpha Adaptive Adam, RMSprop (ML applications) -
Accelerated Methods
- Momentum: add velocity term
- Nesterov: look-ahead gradient
- Conjugate gradient: for quadratic functions
scipy.optimize.minimize(f, x0, method='CG')- conjugate gradient
-
Newton's Method
- Update: x_{k+1} = x_k - H^{-1} * grad f
- Requires Hessian (expensive but quadratic convergence)
- Quasi-Newton (BFGS): approximate Hessian
scipy.optimize.minimize(f, x0, method='BFGS')
-
Convergence Diagnostics
- Monitor ||grad f|| < tolerance
- Check function value decrease
- Watch for oscillation (step size too large)
sympy_compute.py diff "f" --var xfor gradient
Tool Commands
Scipy_Bfgs
uv run python -c "from scipy.optimize import minimize; res = minimize(lambda x: (x[0]-1)**2 + 100*(x[1]-x[0]**2)**2, [0, 0], method='BFGS'); print('Rosenbrock min at', res.x)"
Scipy_Cg
uv run python -c "from scipy.optimize import minimize; res = minimize(lambda x: x[0]**2 + x[1]**2, [1, 1], method='CG'); print('Min at', res.x)"
Sympy_Gradient
uv run python -m runtime.harness scripts/sympy_compute.py diff "x**2 + y**2" --var "[x, y]"
Key Techniques
From indexed textbooks:
- [nonlinear programming_tif] Gradient Methods** - These methods use gradient information to iteratively approach the optimum. Convergence** - Addressing convergence properties. Descent Directions and Stepsize Rules:** Focuses on how to choose descent directions and appropriate step sizes.
- [nonlinear programming_tif] The application of gradient methods to unconstrained optimal control prob- lems is straightforward in principle. For example the steepest descent method takes the form W = b oMV H, (kb ph,y), i=0,. Pl = Thus, given u¥, one computes zF by forward propagation of the system equation, and then p*¥ by backward propagation of the adjoint equation.
- [nonlinear programming_tif] Footer or Trailing Row**: - There is an empty concluding element indicated by a single ". Overall, this table serves as an index for chapters or sections within a document, with particular emphasis on optimization methods and related mathematical strategies, as evidenced by the listed methods like Gradient, Newton, and other derivative techniques. The scattered letters and empty slots may denote a form of stylistic or formatting choice rather than meaningful content in this context.
- [nonlinear programming_tif] Zoutendijk’s method uses tw ) oscalatse)Oand'ye 0,1), a i ! P, where ¢ — Y™k € and my is the firs onnegative k ok 28 %, ) it T #(z*,7"e) < -y (a) Show that (b) Prove that {d*} is gradient relat ishi i i Tt pones A related, thus establishing stationarity of the 2. Min-H Method for Optimal Control) Consider the problem of findin g sequences u = (z1,22,.
- [nonlinear programming_tif] Mustration of the function f of Exercise 1. Stability) (www) We are often interested in whether optimal solutions change radically when the problem data are slightly perturbed. This issue is addressed by stability analysis, to be contrasted with sensitivity analysis, which deals with how much optimal solutions change when problem data change.
Cognitive Tools Reference
See .claude/skills/math-mode/SKILL.md for full tool documentation.
スコア
総合スコア
95/100
リポジトリの品質指標に基づく評価
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
✓説明文
100文字以上の説明がある
+10
✓人気
GitHub Stars 1000以上
+15
✓最近の活動
1ヶ月以内に更新
+10
✓フォーク
10回以上フォークされている
+5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
レビュー
💬
レビュー機能は近日公開予定です

