← スキル一覧に戻る

fields
by parcadei
fieldsは、システム間の統合と連携を実現するスキルです。APIとデータの統合により、シームレスな情報フローと業務効率の向上をサポートします。
⭐ 3,352🍴 252📅 2026年1月23日
agentsclaude-codeclaude-code-cliclaude-code-hooksclaude-code-mcpclaude-code-skillsclaude-code-subagentsclaude-skills
ユースケース
🔗
MCPサーバー連携
Model Context Protocolを活用したAIツール連携。fieldsを活用。
🔗
API連携構築
外部サービスとのAPI連携を簡単に構築。
🔄
データ同期
複数システム間のデータを自動同期。
📡
Webhook設定
イベント駆動の連携をWebhookで実現。
SKILL.md
name: fields description: "Problem-solving strategies for fields in abstract algebra" allowed-tools: [Bash, Read]
Fields
When to Use
Use this skill when working on fields problems in abstract algebra.
Decision Tree
-
Is F a field?
- (F, +) is an abelian group with identity 0
- (F \ {0}, *) is an abelian group with identity 1
- Distributive law holds
z3_solve.py prove "field_axioms"
-
Field Extensions
- E is extension of F if F is subfield of E
- Degree [E:F] = dimension of E as F-vector space
sympy_compute.py minpoly "alpha" --var xfor minimal polynomial
-
Characteristic
- char(F) = smallest n > 0 where n*1 = 0, or 0 if none exists
- char(F) is 0 or prime
- For finite field: |F| = p^n where p = char(F)
-
Algebraic Elements
- alpha is algebraic over F if it satisfies polynomial with coefficients in F
sympy_compute.py solve "p(alpha) = 0"for algebraic relations
Tool Commands
Z3_Field_Axioms
uv run python -m runtime.harness scripts/z3_solve.py prove "field_axioms"
Sympy_Minpoly
uv run python -m runtime.harness scripts/sympy_compute.py minpoly "sqrt(2)" --var x
Sympy_Solve
uv run python -m runtime.harness scripts/sympy_compute.py solve "x**2 - 2" --var x
Key Techniques
From indexed textbooks:
- [Abstract Algebra] Write a computer program to add and multiply mod n, for any n given as input. The output of these operations should be the least residues of the sums and products of two integers. Also include the feature that if (a,n) = 1, an integer c between 1 and n — 1 such that a-c = | may be printed on request.
- [Abstract Algebra] Reading the above equation mod4(that is, considering this equation in the quotient ring Z/4Z), we must have {2} =2[9}=[9} ons ( io ‘| where the | he? Checking the few saad shows that we must take the 0 each time. Introduction to Rings Another ideal in RG is {}-"_, agi | a € R}, i.
- [Catergories for the working mathematician] Geometric Functional Analysis and Its Applications. Lectures in Abstract Algebra II. Lectures in Abstract Algebra III.
- [Abstract Algebra] For p an odd prime, (Z/pZ) is an abelian group of order p* ‘(p — 1). Sylow p-subgroup of this group is cyclic. The map Z/p°Z > Z/pZ defined by at+(p*) a+t+(p) is a ring homomorphism (reduction mod p) which gives a surjective group homo- morphism from (Z/p%Z)* onto (Z/pZ)*.
- [A Classical Introduction to Modern Number Theory (Graduate] Graduate Texts in Mathematics 84 Editorial Board s. Ribet Springer Science+Business Media, LLC 2 3 TAKEUTtlZARING. Introduction to Axiomatic Set Theory.
Cognitive Tools Reference
See .claude/skills/math-mode/SKILL.md for full tool documentation.
スコア
総合スコア
95/100
リポジトリの品質指標に基づく評価
✓SKILL.md
SKILL.mdファイルが含まれている
+20
✓LICENSE
ライセンスが設定されている
+10
✓説明文
100文字以上の説明がある
+10
✓人気
GitHub Stars 1000以上
+15
✓最近の活動
1ヶ月以内に更新
+10
✓フォーク
10回以上フォークされている
+5
✓Issue管理
オープンIssueが50未満
+5
✓言語
プログラミング言語が設定されている
+5
✓タグ
1つ以上のタグが設定されている
+5
レビュー
💬
レビュー機能は近日公開予定です

