スキル一覧に戻る
parcadei

fields

by parcadei

fieldsは、システム間の統合と連携を実現するスキルです。APIとデータの統合により、シームレスな情報フローと業務効率の向上をサポートします。

3,352🍴 252📅 2026年1月23日
GitHubで見るManusで実行

ユースケース

🔗

MCPサーバー連携

Model Context Protocolを活用したAIツール連携。fieldsを活用。

🔗

API連携構築

外部サービスとのAPI連携を簡単に構築。

🔄

データ同期

複数システム間のデータを自動同期。

📡

Webhook設定

イベント駆動の連携をWebhookで実現。

SKILL.md


name: fields description: "Problem-solving strategies for fields in abstract algebra" allowed-tools: [Bash, Read]

Fields

When to Use

Use this skill when working on fields problems in abstract algebra.

Decision Tree

  1. Is F a field?

    • (F, +) is an abelian group with identity 0
    • (F \ {0}, *) is an abelian group with identity 1
    • Distributive law holds
    • z3_solve.py prove "field_axioms"
  2. Field Extensions

    • E is extension of F if F is subfield of E
    • Degree [E:F] = dimension of E as F-vector space
    • sympy_compute.py minpoly "alpha" --var x for minimal polynomial
  3. Characteristic

    • char(F) = smallest n > 0 where n*1 = 0, or 0 if none exists
    • char(F) is 0 or prime
    • For finite field: |F| = p^n where p = char(F)
  4. Algebraic Elements

    • alpha is algebraic over F if it satisfies polynomial with coefficients in F
    • sympy_compute.py solve "p(alpha) = 0" for algebraic relations

Tool Commands

Z3_Field_Axioms

uv run python -m runtime.harness scripts/z3_solve.py prove "field_axioms"

Sympy_Minpoly

uv run python -m runtime.harness scripts/sympy_compute.py minpoly "sqrt(2)" --var x

Sympy_Solve

uv run python -m runtime.harness scripts/sympy_compute.py solve "x**2 - 2" --var x

Key Techniques

From indexed textbooks:

  • [Abstract Algebra] Write a computer program to add and multiply mod n, for any n given as input. The output of these operations should be the least residues of the sums and products of two integers. Also include the feature that if (a,n) = 1, an integer c between 1 and n — 1 such that a-c = | may be printed on request.
  • [Abstract Algebra] Reading the above equation mod4(that is, considering this equation in the quotient ring Z/4Z), we must have {2} =2[9}=[9} ons ( io ‘| where the | he? Checking the few saad shows that we must take the 0 each time. Introduction to Rings Another ideal in RG is {}-"_, agi | a € R}, i.
  • [Catergories for the working mathematician] Geometric Functional Analysis and Its Applications. Lectures in Abstract Algebra II. Lectures in Abstract Algebra III.
  • [Abstract Algebra] For p an odd prime, (Z/pZ) is an abelian group of order p* ‘(p — 1). Sylow p-subgroup of this group is cyclic. The map Z/p°Z > Z/pZ defined by at+(p*) a+t+(p) is a ring homomorphism (reduction mod p) which gives a surjective group homo- morphism from (Z/p%Z)* onto (Z/pZ)*.
  • [A Classical Introduction to Modern Number Theory (Graduate] Graduate Texts in Mathematics 84 Editorial Board s. Ribet Springer Science+Business Media, LLC 2 3 TAKEUTtlZARING. Introduction to Axiomatic Set Theory.

Cognitive Tools Reference

See .claude/skills/math-mode/SKILL.md for full tool documentation.

スコア

総合スコア

95/100

リポジトリの品質指標に基づく評価

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 1000以上

+15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

レビュー

💬

レビュー機能は近日公開予定です