スキル一覧に戻る
llama-farm

server-skills

by llama-farm

server-skillsは、機械学習とAI開発のためのスキルです。モデル構築から運用まで、包括的で効率的なAI開発ワークフローをサポートします。

792🍴 45📅 2026年1月23日
GitHubで見るManusで実行

SKILL.md


name: server-skills description: Server-specific best practices for FastAPI, Celery, and Pydantic. Extends python-skills with framework-specific patterns. allowed-tools: Read, Grep, Glob, Bash user-invocable: false

Server Skills for LlamaFarm

Framework-specific patterns and code review checklists for the LlamaFarm Server component.

Overview

PropertyValue
Pathserver/
Python3.12+
FrameworkFastAPI 0.116+
Task QueueCelery 5.5+
ValidationPydantic 2.x, pydantic-settings
Loggingstructlog with FastAPIStructLogger

This skill extends the shared Python skills. See:

Server-Specific Checklists

TopicFileKey Points
FastAPIfastapi.mdRoutes, dependencies, middleware, exception handlers
Celerycelery.mdTask patterns, error handling, retries, signatures
Pydanticpydantic.mdPydantic v2 models, validation, serialization
Performanceperformance.mdAsync patterns, caching, connection pooling

Architecture Overview

server/
├── main.py                 # Uvicorn entry point, MCP mount
├── api/
│   ├── main.py             # FastAPI app factory, middleware setup
│   ├── errors.py           # Custom exceptions + exception handlers
│   ├── middleware/         # ASGI middleware (structlog, errors)
│   └── routers/            # API route modules
│       ├── projects/       # Project CRUD endpoints
│       ├── datasets/       # Dataset management
│       ├── rag/            # RAG query endpoints
│       └── ...
├── core/
│   ├── settings.py         # pydantic-settings configuration
│   ├── logging.py          # structlog setup, FastAPIStructLogger
│   └── celery/             # Celery app configuration
│       ├── celery.py       # Celery app instance
│       └── rag_client.py   # RAG task signatures and helpers
├── services/               # Business logic layer
│   ├── project_service.py  # Project CRUD operations
│   ├── dataset_service.py  # Dataset management
│   └── ...
├── agents/                 # AI agent implementations
└── tests/                  # Pytest test suite

Quick Reference

Settings Pattern (pydantic-settings)

from pydantic_settings import BaseSettings

class Settings(BaseSettings, env_file=".env"):
    HOST: str = "0.0.0.0"
    PORT: int = 8000
    LOG_LEVEL: str = "INFO"

settings = Settings()  # Module-level singleton

Structured Logging

from core.logging import FastAPIStructLogger

logger = FastAPIStructLogger(__name__)
logger.info("Operation completed", extra={"count": 10, "duration_ms": 150})
logger.bind(namespace=namespace, project=project_id)  # Add context

Custom Exceptions

# Define exception hierarchy
class NotFoundError(Exception): ...
class ProjectNotFoundError(NotFoundError):
    def __init__(self, namespace: str, project_id: str):
        self.namespace = namespace
        self.project_id = project_id
        super().__init__(f"Project {namespace}/{project_id} not found")

# Register handler in api/errors.py
async def _handle_project_not_found(request: Request, exc: Exception) -> Response:
    payload = ErrorResponse(error="ProjectNotFound", message=str(exc))
    return JSONResponse(status_code=404, content=payload.model_dump())

def register_exception_handlers(app: FastAPI) -> None:
    app.add_exception_handler(ProjectNotFoundError, _handle_project_not_found)

Service Layer Pattern

class ProjectService:
    @classmethod
    def get_project(cls, namespace: str, project_id: str) -> Project:
        project_dir = cls.get_project_dir(namespace, project_id)
        if not os.path.isdir(project_dir):
            raise ProjectNotFoundError(namespace, project_id)
        # ... load and validate

Review Checklist Summary

  1. FastAPI Routes (High priority)

    • Proper async/sync function choice
    • Response model defined with response_model=
    • OpenAPI metadata (operation_id, tags, summary)
    • HTTPException with proper status codes
  2. Celery Tasks (High priority)

    • Use signatures for cross-service calls
    • Implement proper timeout and polling
    • Handle task failures gracefully
    • Store group metadata for parallel tasks
  3. Pydantic Models (Medium priority)

    • Use Pydantic v2 patterns (model_config, Field)
    • Proper validation with field constraints
    • Serialization with model_dump()
  4. Performance (Medium priority)

    • Avoid blocking calls in async functions
    • Use proper connection pooling for external services
    • Implement caching where appropriate

See individual topic files for detailed checklists with grep patterns.

スコア

総合スコア

75/100

リポジトリの品質指標に基づく評価

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 500以上

+10
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

0/5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

レビュー

💬

レビュー機能は近日公開予定です