スキル一覧に戻る
llama-farm

python-skills

by llama-farm

python-skillsは、機械学習とAI開発のためのスキルです。モデル構築から運用まで、包括的で効率的なAI開発ワークフローをサポートします。

792🍴 45📅 2026年1月23日
GitHubで見るManusで実行

SKILL.md


name: python-skills description: Shared Python best practices for LlamaFarm. Covers patterns, async, typing, testing, error handling, and security. allowed-tools: Read, Grep, Glob user-invocable: false

Python Skills for LlamaFarm

Shared Python best practices and code review checklists for all Python components in the LlamaFarm monorepo.

Applicable Components

ComponentPathPythonKey Dependencies
Serverserver/3.12+FastAPI, Celery, Pydantic, structlog
RAGrag/3.11+LlamaIndex, ChromaDB, Celery
Universal Runtimeruntimes/universal/3.11+PyTorch, transformers, FastAPI
Configconfig/3.11+Pydantic, JSONSchema
Commoncommon/3.10+HuggingFace Hub

Quick Reference

TopicFileKey Points
Patternspatterns.mdDataclasses, Pydantic, comprehensions, imports
Asyncasync.mdasync/await, asyncio, concurrent execution
Typingtyping.mdType hints, generics, protocols, Pydantic
Testingtesting.mdPytest fixtures, mocking, async tests
Errorserror-handling.mdCustom exceptions, logging, context managers
Securitysecurity.mdPath traversal, injection, secrets, deserialization

Code Style

LlamaFarm uses ruff with shared configuration in ruff.toml:

line-length = 88
target-version = "py311"
select = ["E", "F", "I", "B", "UP", "SIM"]

Key rules:

  • E, F: Core pyflakes and pycodestyle
  • I: Import sorting (isort)
  • B: Bugbear (common pitfalls)
  • UP: Upgrade syntax to modern Python
  • SIM: Simplify code patterns

Architecture Patterns

Settings with pydantic-settings

from pydantic_settings import BaseSettings

class Settings(BaseSettings, env_file=".env"):
    LOG_LEVEL: str = "INFO"
    HOST: str = "0.0.0.0"
    PORT: int = 8000

settings = Settings()  # Singleton at module level

Structured Logging with structlog

from core.logging import FastAPIStructLogger  # Server
from core.logging import RAGStructLogger      # RAG
from core.logging import UniversalRuntimeLogger  # Runtime

logger = FastAPIStructLogger(__name__)
logger.info("Operation completed", extra={"count": 10, "duration_ms": 150})

Abstract Base Classes for Extensibility

from abc import ABC, abstractmethod

class Component(ABC):
    def __init__(self, name: str, config: dict[str, Any] | None = None):
        self.name = name or self.__class__.__name__
        self.config = config or {}

    @abstractmethod
    def process(self, documents: list[Document]) -> ProcessingResult:
        pass

Dataclasses for Internal Data

from dataclasses import dataclass, field

@dataclass
class Document:
    content: str
    metadata: dict[str, Any] = field(default_factory=dict)
    id: str = field(default_factory=lambda: str(uuid.uuid4()))

Pydantic Models for API Boundaries

from pydantic import BaseModel, Field, ConfigDict

class EmbeddingRequest(BaseModel):
    model: str
    input: str | list[str]
    encoding_format: Literal["float", "base64"] | None = "float"

    model_config = ConfigDict(str_strip_whitespace=True)

Directory Structure

Each Python component follows this structure:

component/
├── pyproject.toml     # UV-managed dependencies
├── core/              # Core functionality
│   ├── __init__.py
│   ├── settings.py    # Pydantic Settings
│   └── logging.py     # structlog setup
├── services/          # Business logic (server)
├── models/            # ML models (runtime)
├── tasks/             # Celery tasks (rag)
├── utils/             # Utility functions
└── tests/
    ├── conftest.py    # Shared fixtures
    └── test_*.py

Review Checklist Summary

When reviewing Python code in LlamaFarm:

  1. Patterns (Medium priority)

    • Modern Python syntax (3.10+ type hints)
    • Dataclass vs Pydantic used appropriately
    • No mutable default arguments
  2. Async (High priority)

    • No blocking calls in async functions
    • Proper asyncio.Lock usage
    • Cancellation handled correctly
  3. Typing (Medium priority)

    • Complete return type hints
    • Generic types parameterized
    • Pydantic v2 patterns
  4. Testing (Medium priority)

    • Fixtures properly scoped
    • Async tests use pytest-asyncio
    • Mocks cleaned up
  5. Errors (High priority)

    • Custom exceptions with context
    • Structured logging with extra dict
    • Proper exception chaining
  6. Security (Critical priority)

    • Path traversal prevention
    • Input sanitization
    • Safe deserialization

See individual topic files for detailed checklists with grep patterns.

スコア

総合スコア

75/100

リポジトリの品質指標に基づく評価

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

0/10
人気

GitHub Stars 500以上

+10
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

0/5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

レビュー

💬

レビュー機能は近日公開予定です