
binary-lifting
by gmh5225
binary-liftingは、ソフトウェア開発を効率化するスキルです。開発ワークフロー全体をサポートし、チームの生産性向上とコード品質の改善を実現します。
SKILL.md
name: binary-lifting description: Expertise in binary lifting techniques - converting machine code to LLVM IR for analysis, decompilation, and recompilation. Use this skill when working on reverse engineering, binary analysis, deobfuscation, or converting binaries to higher-level representations.
Binary Lifting Skill
This skill covers techniques and tools for lifting binary executables to LLVM IR, enabling advanced analysis, transformation, and recompilation of existing binaries.
Core Concepts
What is Binary Lifting?
Binary lifting is the process of translating low-level machine code (x86, ARM, etc.) into a higher-level intermediate representation (LLVM IR), enabling:
- Static and dynamic analysis
- Deobfuscation and vulnerability research
- Code recompilation and optimization
- Cross-architecture translation
Lifting Pipeline
Binary → Disassembly → IR Generation → Optimization → Analysis/Recompilation
Major Lifting Frameworks
Production-Grade Tools
- RetDec (Avast): Full decompiler with C output, multi-architecture support
- McSema (Trail of Bits): x86/x64 to LLVM IR, function recovery
- revng: Based on QEMU, supports multiple architectures
- reopt (Galois): Focus on correctness and formal methods
Research/Specialized Tools
- Rellume: Fast x86-64 to LLVM lifting for JIT scenarios
- fcd: Pattern-based decompiler with optimization passes
- bin2llvm: QEMU-based binary to LLVM translator
- llvm-mctoll: Microsoft's machine code to LLVM lifter
Language-Specific Lifters
- llvm2c/IR->C: Convert LLVM IR back to C code
- llvm2cranelift: LLVM IR to Cranelift IR
- Leaven: LLVM IR to Go language
- masxinlingvonta: JVM bytecode to LLVM IR
Implementation Techniques
Instruction Semantics Translation
// Example: Translating x86 ADD to LLVM IR
Value* translateADD(IRBuilder<> &builder, Value* op1, Value* op2) {
Value* result = builder.CreateAdd(op1, op2, "add_result");
// Update flags (CF, OF, SF, ZF, etc.)
updateCarryFlag(builder, op1, op2, result);
updateOverflowFlag(builder, op1, op2, result);
updateSignFlag(builder, result);
updateZeroFlag(builder, result);
return result;
}
Control Flow Recovery
- Linear Sweep: Simple but misses code with embedded data
- Recursive Descent: Follow control flow, better coverage
- Speculative Disassembly: Handle indirect jumps/calls
- Machine Learning: Use ML to identify function boundaries
Handling Indirect Control Flow
- Value Set Analysis (VSA)
- Symbolic execution for jump target resolution
- Type recovery for virtual table reconstruction
Triton Integration
Triton symbolic execution engine can be used with lifting:
from triton import TritonContext, ARCH, Instruction
ctx = TritonContext(ARCH.X86_64)
# Symbolically execute and extract AST
inst = Instruction(b"\x48\x01\xd8") # add rax, rbx
ctx.processing(inst)
# Convert Triton AST to LLVM IR
ast = ctx.getRegisterAst(ctx.registers.rax)
llvm_ir = triton_ast_to_llvm(ast)
Deobfuscation via Lifting
Approach
- Lift obfuscated binary to LLVM IR
- Apply optimization passes to simplify
- Use custom passes for specific obfuscation patterns
- Re-emit cleaned code
Useful Optimization Passes
- Dead Store Elimination (DSE)
- Global Value Numbering (GVN)
- Constant Propagation
- Instruction Combining
- Loop Simplification
VMP/VM Handler Recovery
- Identify dispatcher patterns
- Extract VM bytecode semantics
- Convert handlers to native IR
- Example: TicklingVMProtect for VMProtect analysis
Best Practices
- Architecture Support: Handle endianness, calling conventions, ABI differences
- Memory Modeling: Accurate memory layout for global/stack variables
- External Dependencies: Handle library calls and system calls
- Validation: Compare execution traces of original vs lifted code
- Incremental Lifting: Support partial program analysis
Dynamic Binary Lifting
Runtime Translation
- Instrew: Fast instrumentation through LLVM
- QBDI: QuarkslaB Dynamic Binary Instrumentation
- binopt: Runtime optimization of binary code
JIT Recompilation
Lift frequently executed code paths for runtime optimization:
- Profile-guided lifting
- Hot path detection
- Speculative optimization
Resources
For a complete list of lifting tools and research papers, refer to the LIFT section in the main README.md.
スコア
総合スコア
リポジトリの品質指標に基づく評価
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 500以上
1ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
レビュー
レビュー機能は近日公開予定です


