スキル一覧に戻る
WILLOSCAR

evidence-draft

by WILLOSCAR

evidence-draftは、other分野における実用的なスキルです。複雑な課題への対応力を強化し、業務効率と成果の質を改善します。

83🍴 10📅 2026年1月24日
GitHubで見るManusで実行

SKILL.md


name: evidence-draft description: | Create per-subsection evidence packs (NO PROSE): claim candidates, concrete comparisons, evaluation protocol, limitations, plus citation-backed evidence snippets with provenance. Trigger: evidence draft, evidence pack, claim candidates, concrete comparisons, evidence snippets, provenance, 证据草稿, 证据包, 可引用事实. Use when: outline/subsection_briefs.jsonl exists and you want evidence-first section drafting where every paragraph can be backed by traceable citations/snippets. Skip if: outline/evidence_drafts.jsonl already exists and is refined (no placeholders; >=4 comparisons per subsection; blocking_missing empty). Network: none (richer evidence improves with abstracts/fulltext). Guardrail: NO PROSE; do not invent facts; only use citation keys that exist in citations/ref.bib.

Evidence Draft (NO PROSE)

Purpose: turn papers/paper_notes.jsonl + subsection mapping into writeable evidence packs so the writer never has to guess (and never copies outline placeholders).

Key design: every pack should contain evidence snippets (1–2 sentences) with provenance (abstract/fulltext/notes pointer). Even abstract-level snippets are better than template prose.

Why this matters for writing quality:

  • Packs are the writer substrate; if packs are thin, C5 will either pad prose or guess.
  • Treat blocking_missing as a stop signal: route upstream (notes/bindings) instead of writing around gaps.

Role cards (prompt-level guidance)

  • Evidence Curator

    • Mission: turn paper notes into contrastable, citeable evidence (not summaries).
    • Do: extract snippet-backed comparisons; surface protocol details and failure modes.
    • Avoid: axis-driven "hypotheses" that are not supported by snippets.
  • Provenance Accountant

    • Mission: keep every snippet auditable.
    • Do: attach provenance pointers (abstract/fulltext/notes location) and keep excerpts sentence-level.
    • Avoid: untraceable paraphrases that cannot be verified.
  • Skeptic

    • Mission: prevent evidence inflation.
    • Do: downgrade claims when evidence is abstract/title-only; convert unknowns into verify_fields (not repeated boilerplate in prose).
    • Avoid: strong conclusions without protocol/metric context.

Non-negotiables

  • NO PROSE: packs are bullets-only evidence, not narrative paragraphs.
  • No fabrication: do not invent datasets/metrics/numbers.
  • Citation hygiene: every cite key must exist in citations/ref.bib.
  • Claim candidates must be snippet-derived (no axis-driven “Hypothesis: …” items); put questions into verify_fields instead.
  • Avoid silent truncation: keep claim_candidates[].claim long enough to carry concrete detail (<= ~400 chars) and keep highlight excerpt sentence-level (<= ~280 chars).
  • Numeric-claim hygiene (evidence substrate):
    • If a snippet/claim includes digits or %, also include minimal context in the same bullet (at least 2 of: task/setting, metric definition, constraint/budget/tool access).
    • If the context is not present in notes/fulltext, do not keep the number; downgrade to qualitative wording and add a verify_fields item instead.
  • Evidence-aware language:
    • fulltext-backed → can summarize comparisons
    • abstract-only/title-only → must be provisional + list verify-fields (no strong “dominant trade-offs” language)

Inputs

Required:

  • outline/subsection_briefs.jsonl
  • papers/paper_notes.jsonl
  • citations/ref.bib

Optional (recommended for addressable evidence):

  • papers/evidence_bank.jsonl
  • outline/evidence_bindings.jsonl

Outputs

  • outline/evidence_drafts.jsonl

Optional (human-readable):

  • outline/evidence_drafts/ (folder of per-subsection Markdown packs)

Output format (outline/evidence_drafts.jsonl)

JSONL (one JSON object per line). Required fields per record:

  • sub_id, title
  • evidence_ids (list[str]; if outline/evidence_bindings.jsonl exists, this should match the binding for the subsection)
  • evidence_level_summary (counts: fulltext|abstract|title)
  • evidence_snippets (list; each has text, paper_id, citations, provenance)
  • definitions_setup (list of cited bullets)
  • claim_candidates (3–5 items; each has claim, citations, evidence_field)
  • concrete_comparisons (>=4 items; each has axis, A_papers, B_papers, citations, evidence_field; may also include A_highlights/B_highlights with snippet-backed contrast anchors)
  • evaluation_protocol (list of concrete protocol bullets + citations)
  • failures_limitations (2–4 cited bullets)
  • blocking_missing (list[str]; if non-empty, drafting must stop)
  • verify_fields (list[str]; non-blocking: fields to verify before making strong claims)

Provenance schema (per snippet)

Example:

{"source":"abstract","pointer":"papers/paper_notes.jsonl:paper_id=P0012#abstract","evidence_level":"abstract"}

Allowed source: fulltext|abstract|paper_notes|title.

Workflow

  1. Load outline/subsection_briefs.jsonl and read each subsection’s rq, axes, clusters, and evidence-level policy.
  2. Load papers/paper_notes.jsonl and build a per-paper evidence index (bibkey, evidence_level, abstract, fulltext_path, limitations).
  3. For each subsection:
    • Build evidence_snippets from mapped papers (prefer fulltext, else abstract), and record provenance.
    • Definitions/setup: 1–2 bullets that define setup + scope boundary (with citations).
    • Claim candidates: 3–5 checkable candidates (prefer snippet-derived; tag with evidence_field).
    • Concrete comparisons: >=4 A-vs-B comparisons (cluster-vs-cluster) along explicit axes.
    • Evaluation protocol: list concrete benchmark/metric tokens if extractable; otherwise treat as a blocking gap.
    • Failures/limitations: 2–4 concrete limitations/failure modes with citations.
    • Set blocking_missing for hard blockers (e.g., no usable citations; title-only evidence; no eval tokens for an eval-heavy subsection).
  4. Write outline/evidence_drafts.jsonl and per-subsection Markdown copies.

Quality checklist

  • Every subsection has >=4 concrete comparisons.
  • evidence_snippets is non-empty and includes provenance.
  • Any bullet containing numbers/% also carries minimal protocol context (task/metric/constraint), or the number is removed and moved to verify_fields.
  • claim_candidates has >=3 snippet-derived items (no axis-driven hypotheses).
  • blocking_missing is empty.
  • No TODO / (placeholder) / <!-- SCAFFOLD --> / unicode ellipsis () remains.

Script

When you are satisfied with evidence packs (and blocking_missing is empty), create:

  • outline/evidence_drafts.refined.ok

This is an explicit "I reviewed/refined this" signal:

  • prevents scripts from regenerating and undoing your work
  • (in strict runs) can be used as a completion signal before writing

Quick Start

  • python .codex/skills/evidence-draft/scripts/run.py --help
  • python .codex/skills/evidence-draft/scripts/run.py --workspace <ws>

All Options

  • See --help.
  • Inputs (required): outline/subsection_briefs.jsonl, papers/paper_notes.jsonl, citations/ref.bib.
  • Inputs (optional): papers/evidence_bank.jsonl, outline/evidence_bindings.jsonl.

Examples

  • Generate evidence packs after citations:
    • Ensure citations/ref.bib exists.
    • Ensure outline/subsection_briefs.jsonl exists (axes/clusters/plan filled).
    • Ensure papers/paper_notes.jsonl has usable evidence (abstract/fulltext/limitations).
    • Run: python .codex/skills/evidence-draft/scripts/run.py --workspace workspaces/<ws>

Troubleshooting

Issue: evidence packs have blocking_missing entries

Fix:

  • Treat blocking_missing as a stop signal: enrich papers/paper_notes.jsonl / papers/evidence_bank.jsonl (or adjust scope) before drafting prose.

Issue: evidence snippets are empty or untraceable

Fix:

  • Ensure each snippet includes provenance (paper id + location) and that outline/evidence_bindings.jsonl is non-empty for the subsection.

スコア

総合スコア

70/100

リポジトリの品質指標に基づく評価

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

0/10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

1ヶ月以内に更新

+10
フォーク

10回以上フォークされている

+5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

レビュー

💬

レビュー機能は近日公開予定です