スキル一覧に戻る
TechNickAI

youtube-transcript-analyzer

by TechNickAI

Python project template with Ruff for linting/formatting, pytest for testing, pre-commit hooks, and GitHub Actions CI/CD. Includes Claude Code and Cursor configuration.

1🍴 0📅 2025年11月29日
GitHubで見るManusで実行

SKILL.md


name: youtube-transcript-analyzer description: Use when analyzing YouTube videos for research, learning, or understanding how content relates to a project - downloads transcripts with yt-dlp, chunks long content, and provides context-aware analysis

# Install via pip
pip install yt-dlp

# Or via homebrew (macOS)
brew install yt-dlp

# Verify installation
yt-dlp --version
# Create temporary directory for this analysis
ANALYSIS_DIR=$(mktemp -d)
echo "Using temporary directory: $ANALYSIS_DIR"

Download transcript using yt-dlp to extract subtitles/transcripts to the temporary directory:

# Download transcript only (no video)
yt-dlp --skip-download --write-auto-sub --sub-format vtt --output "$ANALYSIS_DIR/transcript.%(ext)s" URL

# Or get manually created subtitles if available (higher quality)
yt-dlp --skip-download --write-sub --sub-lang en --sub-format vtt --output "$ANALYSIS_DIR/transcript.%(ext)s" URL

# Get video metadata for context
yt-dlp --skip-download --print-json URL > "$ANALYSIS_DIR/metadata.json"

Handle long transcripts - For transcripts exceeding 8,000 tokens (roughly 6,000 words or 45+ minutes):

  1. Split into logical chunks based on timestamp or topic breaks
  2. Generate a summary for each chunk focusing on key concepts
  3. Create an overall synthesis connecting themes to the user's question
  4. Reference specific timestamps for detailed sections

For shorter transcripts, analyze directly without chunking.

Provide analysis in this format:

Video Overview:

  • Title, author, duration
  • Main topic and key themes

Key Insights:

  • Concept 1 with timestamp
  • Concept 2 with timestamp
  • Technical approaches explained

Relevance to Your Project:

  • Direct applications
  • Differences from current approach
  • Potential improvements or learnings

Specific Recommendations:

  • Actionable items based on video content
  • Code patterns or techniques to consider

Multiple languages: Prefer English transcripts using --sub-lang en. If unavailable, check available languages with --list-subs.

Long processing time: Set expectations for videos over 2 hours. Offer to focus on specific sections if timestamps provided.

Extract concrete examples and code patterns when available. Reference specific timestamps so users can jump to relevant sections.

When comparing with project code, be specific about similarities and differences. Vague comparisons like "similar approach" don't add value.

For technical content, identify the underlying patterns and principles rather than surface-level implementation details. Help users understand transferable concepts.

スコア

総合スコア

75/100

リポジトリの品質指標に基づく評価

SKILL.md

SKILL.mdファイルが含まれている

+20
LICENSE

ライセンスが設定されている

+10
説明文

100文字以上の説明がある

+10
人気

GitHub Stars 100以上

0/15
最近の活動

3ヶ月以内に更新

+5
フォーク

10回以上フォークされている

0/5
Issue管理

オープンIssueが50未満

+5
言語

プログラミング言語が設定されている

+5
タグ

1つ以上のタグが設定されている

+5

レビュー

💬

レビュー機能は近日公開予定です