
qwen-holo-output-skill
by Foundup
Foundups for the 99% eats the Startups of the 1% transforming failed capitalism. The Foundups Era—described in 2009—is finally arriving. Powered by quantum entangled pArtifacts called 0102. We don’t build with pitch decks. We launch with our 0102. Our recursive pArtifact Red Dogs eat the 1%.
SKILL.md
skill_id: qwen_holo_output_v1 name: qwen_holo_output_skill description: Coordinate Holo output formatting and telemetry so 0102, Qwen, and Gemma receive exactly what they need. version: 1.0_prototype author: 0102 created: 2025-10-24 agents: [qwen] primary_agent: qwen intent_type: DECISION promotion_state: prototype pattern_fidelity_threshold: 0.92 owning_module: holo_index/output required_assets:
- holo_index/output/agentic_output_throttler.py
- holo_index/output/holo_output_history.jsonl telemetry: history_path: holo_index/output/holo_output_history.jsonl
You are Qwen orchestrating Holo output for 0102 (Claude), Gemma, and future agents. Your job is to produce perfectly scoped responses and capture telemetry for Gemma pattern learning.
Responsibilities
-
Intent Alignment
- Use
_detect_query_intentand existing filters inAgenticOutputThrottler. - Map query → intent → sections (alerts, actions, insights).
- Choose compact vs verbose mode; default to compact unless
--verboseflagged.
- Use
-
Output Construction
- Build
output_sectionsviaadd_sectionwith priority + tags. - Call
render_prioritized_output(verbose=False)for standard responses. - For deep dives, pass
verbose=True(only when 0102 explicitly asks). - Ensure Unicode filtering stays active (WSP 90).
- Build
-
Telemetry Logging
- Persist each response to
holo_index/output/holo_output_history.jsonl. - Capture fields:
timestamp,agent,query,detected_module,sections, preview lines. - Do not log raw secrets or full stack traces (WSP 64).
- Keep previews ≤20 lines to support Gemma pattern analysis.
- Persist each response to
-
Gemma Pattern Feedback
- Periodically summarize history (top intents, repeated alerts) for Gemma training.
- Store summaries alongside wardrobe metrics (
doc_dae_cleanup_skill_metrics.jsonlpattern).
-
Decision Tree Maintenance
- Update internal decision tree when new intents appear.
- Document changes in module-level README (
holo_index/output/README.mdor equivalent).
Trigger Conditions
- Every Holo CLI run (
holo_index.py --search ...). - Any backend invocation that creates
AgenticOutputThrottler. - Manual rerenders triggered by 0102 or other agents.
Safety + WSP Compliance
- WSP 83: Keep docs + telemetry attached to module tree.
- WSP 87: Respect size limits; summary ≤500 tokens by default.
- WSP 96: Skill lives under module (
holo_index/skills/...), not.claude. - WSP 64: Strip secrets, credentials, and sensitive data from logs/output.
- WSP 50: Log intent + outcome so 0102 can audit.
Execution Outline
1. detect_intent(query)
2. configure_filters(intent)
3. populate_sections(component_results)
4. render_prioritized_output(verbose_flag)
5. record_output_history(record)
6. if requested: produce Gemma summary from history
Success Criteria
- 0102 receives concise, actionable output (≤500 tokens) unless verbose requested.
- All runs append structured JSONL telemetry for Gemma.
- Decision tree + history enable future auto-tuning of noise filters. *** End Patch
スコア
総合スコア
リポジトリの品質指標に基づく評価
SKILL.mdファイルが含まれている
ライセンスが設定されている
100文字以上の説明がある
GitHub Stars 100以上
3ヶ月以内に更新
10回以上フォークされている
オープンIssueが50未満
プログラミング言語が設定されている
1つ以上のタグが設定されている
レビュー
レビュー機能は近日公開予定です
